首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s?1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm?2 at an air velocity of 0.5 m/s?1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20–4.52 × 10?11 m2 s?1 and 3.04–4.79 × 10?11 m2/s?1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

2.
The effect of air temperature (AT) and slice thickness (ST) on the quality and drying kinetics of tomato slices were studied. The drying period of tomato slices to reach the moisture content of 15% (wb) ranged from 2.6 to 18.7 h. The water diffusivity, activation energy, and resistance to diffusion ranged from 1.4 × 10?10 to 2.8 × 10?9 m2/s, 21.25 to 23.4 kJ/mol, and from 939 to 4590 m2 s/kg, respectively. Drying had a significant effect on ascorbic acid, soluble solid, acidity, and pH (P = 0.01). The ascorbic acid degradation was greatly influenced by ST. The results show that time-temperature superposition technique (TTST) was very efficient in the modeling of the drying process. The proposed TTST provides a novel alternative in curve-fitting exercise of drying data. Neural networks also showed favorable performance in estimating the drying functions.  相似文献   

3.
The drying kinetics of olive cake, the solid by-product of the olive oil extraction process, has been experimentally investigated in a small-scale tray dryer using both constant and intermittent (on/off) heating schemes. The parameters investigated include inlet air temperature and intermittency of heat input. The drying kinetics was interpreted through two mathematical models, the Page equation and the Lewis equation. The Page equation was most appropriate in describing the drying behavior of olive cake. A diffusion model was used to describe the moisture transfer and the effective diffusion coefficient at each temperature was determined. The dependence of the effective diffusion coefficient on drying temperature can be adequately explained based on an Arrhenius-type relation. The effective diffusion coefficient varied between 7.6 × 10?8 and 2.5 × 10?7 m2/min with an activation energy of 38.55 kJ/mol. Comparison of time evolution of material moisture content due to intermittent and constant drying is also made.  相似文献   

4.
A modular solar cabinet dryer equipped with an air collector including a drying chamber with different tray arrangements was developed to determine moisture changes in different sizes and forms (slices and cubes) of apple and carrot pieces and to carry out serial measurements of temperatures, solar radiation, and air humidity distributions during the drying process. The initial and final moisture contents (w.b.) of fresh products were 88 and 26% for apple and 71 and 13% for carrot with initial weights of 1.56 and 3 kg, respectively. The results revealed that the temperature inside the chamber was strongly negatively correlated with air humidity (R2 = 0.91) and that the length of the drying period was influenced by the weather conditions, as the cloudy weather retarded drying of carrots. It was possible to reach an air drying temperature over 41°C with a daily total solar energy incident on the collector's surface of 857.2 kJ/(m2 day) for apples and 753.20 kJ/(m2 day) for carrots. The analysis of energy requirements to remove moisture from apples and carrots during the total drying period showed values of 3300.19 and 7428.28 kJ/kg, respectively. The amount of air to remove water from the samples was also determined as 126.93 m3 for apples and 928.56 m3 for carrots.  相似文献   

5.
Air jet impingement combined with infrared drying (IMIRD) was developed as an alternative processing method to produce health-friendly potato chips in place of conventional deep-fat frying. This article investigates the effects of IMIRD compared to air jet impingement drying alone (IMD) and conventional convective drying (CCVD) on potato being processed as potato chips in term of drying characteristics, quality attributes (shrinkage, color, and hardness), and specific energy consumption (SEC) of the dryer. The experiments were carried out at three different air velocities (5, 10, 15 m/s) and infrared intensities (0.16, 0.27, and 0.33 W/cm2) at a fixed air temperature of 85°C. The experimental results show that the drying air velocity and infrared intensity had a significant effect on the moisture removal from potato slices. IMIRD, compared to IMD and CCVD, provided a higher drying rate, less shrinkage, lower hardness, and less color deterioration. An increase in air velocity at each infrared intensity caused a decrease in the total SEC value.  相似文献   

6.
K.J. PARK 《Drying Technology》2013,31(3-5):889-905
Abstract

The drying process of salted pieces of shark muscle (Carckarhinus limbatus) was accomplished using three air conditions (20 °C -40 %RH; 30 °C - 30 %RH; 40 °C - 45 %RH) and two air velocities (0.5 m/s; 3.0 m/s). Shrinkage of material during drying was correlated as a linear function between linear dimension and moisture content. The experimental drying data were obtained using both the diffusional model with moisture content parameter (considering no shrinkage) and the diffusional model with moisture concentration parameter (considering shrinkage). The values of effective diffusivity varied between 1.50×l0?10m2/s and 2 85×l0?10m2/s for drying process considering no shrinkage and between 0.87×l0?10m2/s and 1.61×l0?10m2/s for process considering shrinkage. The activation energy was calculated assuming an Arrhenius' type equation. The values were 17.94 KJ/mol with the air velocity of 0.5 m/s and 21.94 kJ/mol with the air velocity of 3,0 m/s for effective diffusivity without shrinkage. The values were 2.04 kJ/mol with the air velocity of 0.5 m/s and 16.12 kJ/mol with the air velocity of 3.0 m/s for effective diffusivity with shrinkage. These low activation energy values, calculated considering the shrinking effect, show that the side effects during drying reduces the effective diffusivity dependence on temperature  相似文献   

7.
In the present work, the drying kinetics and evolution of sample's core temperature and moisture distribution of yam slices during convective hot-air-drying were investigated. In terms of drying kinetics, the effect of drying temperature (50, 55, 60, 65, 70°C), relative humidity (20, 30, 40, 50%), and sample thickness (5, 7, 9 mm) on drying characteristics of yam slices were studied. Results indicated that all the three factors had significant influence on the drying kinetics, whereas drying temperature gave the most significant effect, followed by relative humidity and sample thickness. Moisture-effective diffusivity and activation energy were calculated, and it was found that the diffusivity was in the range of 5.5454 × 10?10–1.0804 × 10?9 m2/s and the activation energy was 29.528 kJ/mol. Heat and mass transfer models were developed based on the finite element method to calculate the core temperature and moisture distribution of yam slices during drying. Model validation exhibited good agreement between predicted and experimental data, which illustrated that the developed models could precisely predict the core temperature profile and moisture distribution of the sample. The current work provides further insights to understand the characteristics and mechanism of drying process of yam slices.  相似文献   

8.
This article deals with the exergy analysis and evaluation of broccoli in three different drying systems. The effects of drying air temperature on the exergy destruction, exergy efficiency, and exergetic improvement potential of the drying process were investigated. The exergy destruction rate for the drying chamber increased with the rise in the drying air temperature at 1.5 m/s, both in the tray and the heat pump dryer. The highest exergy efficiency value was obtained as 90.86% in the fluid bed dryer in comparison to the other two drying systems and the improvement potential rate was the highest in the heat pump dryer during drying of broccoli at the drying air temperature of 45°C and the drying air velocity of 1.0 m/s.  相似文献   

9.
Rehydration properties and microstructure of vacuum-microwave and hot air–dried potato cubes were examined. Two kinds of models were considered to describe the hydration kinetics: a diffusion model for a cube and two empirical equations, Peleg and Weibull. The values of the effective moisture diffusivity of soaked potatoes were in the range 1.17 × 10?9 to 4.73 × 10?9 m2/s. The vacuum-microwave drying technique resulted in puffed potato particles characterized by porous microstructure with a network of open cavities and the hot air drying gave the potato particles containing compacted cells with the low amount of open micro-caves. Higher rehydration ability was observed for the samples dried with microwaves under low pressure. Vacuum-microwave drying at 6 kPa seems to be the optimal drying condition for potato cubes, ensuring porous microstructure of dried material and low shrinkage of dried potato particles as well as their high recovery properties and rehydration.  相似文献   

10.
The purpose of this research is to investigate the drying kinetics and determine the suitable drying method of prina, which is obtained after pressing of olives in olive oil factories, and which cannot be used efficiently in certain sectors. Drying experiments were performed at drying temperatures of 60°C, 70°C, and 80°C at a fixed air velocity of 2 m/s using a hot air dryer and with microwave powers of 90 W, 360 W, and 600 W using a microwave dryer. The prina layer thicknesses were selected as 7, 9, and 11 mm for both drying methods. The minimum energy consumption values were measured as 42.0 Wh for 600 W power level and 7 mm layer thickness, and 10260 Wh for 7 mm layer thickness and 80°C temperatures. It was found that energy consumption during hot air drying was more than that of microwave drying. As a result, the suitable dryer and thickness of layer were selected as microwave dryer and 7 mm, respectively. The results of statistical analyses showed that the most suitable model to define the drying behavior of prina samples were found to be the Page model for the microwave dryer and Wang &; Singh model for the hot air dryer. Also, penetration depth, the loss tangent value (tanδ), dielectric constant of material (??), and dielectric loss factor (???) of dried prina were calculated as 34.51 cm, 0.1059, 75.65, and 8.01, at 2450 MHz, respectively.  相似文献   

11.
The thin-layer drying of three varieties of green peas was carried out in hot air-drying chamber using an automatic weighing system at five temperatures (55–75°C) and air velocity of 100 m/min. The green peas were blanched and sulphited before drying. The variety Pb-87 dried at 60°C was judged to be best for quality on the basis of sensory evaluation and rehydration ratio. The Thomson model was found to represent thin-layer drying kinetics within 99.9% accuracy. The effective diffusivity was determined to be 3.95 × 10?10 to 6.23 × 10?10 m2/s in the temperature range of 55 to 75°C. The activation energy for diffusion was calculated to be 22.48 kJ/mol. The variation in shrinkage exhibited a linear relationship with moisture content of the product during drying. The Dincer number at drying air temperature 60°C and drying air velocity 100 m/min was determined to be 2,838,087. The difference between temperatures of drying air and that of green pea kernels was found to decrease with drying time for all the drying temperatures taken for investigation.  相似文献   

12.
Single-layer solar drying experiments were conducted for Mexican tea leaves (Chenopodium ambrosioides) grown in Marrakech. An indirect forced convection solar dryer was used in drying the Mexican tea leaves at different conditions such as ambient air temperature (21° to 35°C), drying air temperature (45° to 60°C) with relative humidity (29 to 53%), airflow rate (0.0277 to 0.0556 m 3/s), and solar radiation (150–920 W/m2). The experimental drying curves showed only a falling rate period. In order to select the suitable form of drying curves, 14 mathematical models were applied to the experimental data and compared according to their statistical parameters. The main factor in controlling the drying rate was found to be the temperature. The drying rate equation was determined empirically from the characteristic drying curve. The diffusion coefficient of the Chenopodium ambrosioides leaves was estimated and varied between 1.0209 × 10?9 and 1.0440 × 10?8 m 2·s?1.The activation energy was found to be 89.1486 kJ·mol?1.  相似文献   

13.
Drying data of salted shark (Carcharhinus limbatus) muscle pieces samples, dried in a convective dryer, by using three different air conditions and two different air velocities, were treated by Fick's second law. The shrinkage during drying process was considered as a linear function of sample moisture. The Fick's second law equation was numerically solved by the explicit finite difference method to obtain effective diffusivity, considering shrinkage and with and without simplification of moisture content profile. The experimental data fitted very well independently of the simplification introduced on the moisture content profile. The best fit was obtained by considering volumetric average of sample moisture content. The effective diffusivity values calculated considering the shrinkage varied from 0.72 to 2.20 × 10?10 m2/s with the mean relative deviation modulus from 1.02 to 6.51%. The activation energy expressed in function of air temperature varied from 3.42 to 19.23 kJ/mol.  相似文献   

14.
A drying technique using a combination of a contact ultrasound apparatus and a hot air dryer is developed to investigate the strengthening effect of contact ultrasound on hot air drying. The effects of drying parameters such as ultrasound power and drying temperature on drying characteristics, effective moisture diffusivity (Deff), microstructure, glass transition temperature (Tg), rehydration ratio, and color difference are discussed. The results show that the application of contact ultrasound causes a significant acceleration of internal mass transfer, and higher ultrasound power applied leads to faster drying rate. The effect of ultrasound power on drying rate decreases along with the reduction of moisture content during drying process. The increase in drying temperature significantly reduces drying time but has a little negative influence on the strengthening effect of ultrasound. Deff values range from 1.0578?×?10?10 to 5.4713?×?10?10?m2/s in contact ultrasound-assisted hot air drying of purple-fleshed sweet potato and increase significantly with an increase in drying temperature as well as ultrasound power. The microstructure of purple-fleshed sweet potato is greatly different at different ultrasound powers during contact ultrasound-assisted hot air drying and shows more microchannels and dilated intercellular spaces in the cross-section of purple-fleshed sweet potato micrographs at higher ultrasound power. Contact ultrasound application during hot air drying could improve the mobility of water and consequently reduce glass transition temperature. Lower color difference and higher rehydration ratio could be achieved as drying temperature decreases and ultrasound power increases. The increase in contact ultrasound power could reduce energy consumption of drying process up to 34.60%. Therefore, contact ultrasound assistance is a promising method to enhance hot air drying process.  相似文献   

15.
The effects of pretreatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of red kidney bean seeds were investigated. Drying experiments were carried out at four different drying air temperatures of 50°C, 60°C, 70°C, and 80°C. It was observed that drying and rehydration characteristics of bean seeds were greatly influenced by air temperatures and pretreatments. Four commonly used mathematical models were evaluated to predict the drying kinetics of bean seeds. The Weibull model described the drying behaviour of bean seeds at all temperatures better than the other models. The effective moisture diffusivities (Deff) of bean seeds were determined using Fick's law of diffusion. The values of Deff were between 1.25 × 10?9 and 3.58 × 10?9 m2/s. Activation energy was estimated by an Arrhenius-type equation and was determined as 24.62, 21.06, and 20.36 kJ/mol for citric acid, blanch, and control samples, respectively.  相似文献   

16.
A feedback strategy of drying control of mate leaves in a thin-layer conveyor-belt dryer was experimentally evaluated. Moisture content in the discharge of the continuous dryer was controlled by manually adjusting the speed of the moving belt between 3.7 × 10?4 and 15.2 × 10?4 m s?1 for approximately 7200 s in 120 s time steps. The sets of PID controller parameters and manipulated conveyor velocities were computed with a dynamic drying model at conditions identical to those found in the closed-loop experiments. The model is represented by a system of two partial differential equations built by energy and solute mass balances in the solid phase of the dryer. A large set of experimental drying curves and temperature of mate leaves as a function of drying time, in the temperature range from 55 to 130°C, confirmed the reliability of the considered model. Experimental closed-loop responses of discharge moisture content in the presence of disturbances in the feed moisture content (≈ 0.5 ? 1.7 dry basis) and variations in set-point (≈ 0.1 ? 1.0 dry basis) validated the suggested control scheme.  相似文献   

17.
The effect of drying temperature on grape wastes, the solid wastes of the wine and raki production processes, was investigated in a cabinet dryer. Drying experiments were performed three air temperatures of 70°, 90,° and 110°C, at constant air velocity of 1.2 m/s, and initial thickness of 1.8 cm for grape marc and 2.0 cm for grape pulp. Experimental data were fitted to Henderson and Pabis, Page, and logarithmic models, respectively. The performance of these models is evaluated by comparing coefficient of determination and reduced chi-square between the observed and predicted moisture ratios. The statistical analysis concluded that the best model was the logarithmic model. The effective moisture diffusivity varied from 8.55 × 10?10 to 3.32 × 10?9 m2/s over the temperature range. Temperature dependence of the diffusivity was well documented by an Arrhenius-type relationship. The activation energies for grape marc and grape pulp were calculated as 25.41 and 13.74 kJ/mol, respectively.  相似文献   

18.

The aim of this work was to optimize the drying process of vegetal pear and minimize energy resources (cost) under prefixed limits involving vegetal pear moisture, color, and productivity. The optimization of vegetal pear drying was made by using response surface methodology (RSM) for minimum process cost and color difference between fresh and dried samples (moisture ≤0.10 g water g d.m.?1). A pilot-plant dryer was used for dehydrating vegetal pear slices (0.5 cm thickness). The tests were carried out at different air temperature (60 to 70°C), samples diameter (4 to 7 cm), and pretreatment with ascorbic acid solutions (0–0.1% w/w). The optimum drying conditions were found at air temperature of 63°C with 5-cm sample diameter and 0.075% of ascorbic acid concentration. On the optimized drying conditions, dried vegetal pear presented values with moisture content of 0.052 g water g d.m.?1, color difference of 11.65, production rate of 0.0073 kg h?1, and total cost of $30.58/kg dried product?1  相似文献   

19.
Convective drying of wastewater sludges and sawdust/sludge mixtures was studied. The first part of this work was an experimental study performed in a cross-flow convective dryer using 500 g of wet material extruded through a disk with circular dies of 12 mm. The results showed that the sawdust addition has a positive impact on the drying process from a mass ratio of 2/8, on a dry basis, with observed drying rates higher than the original sludge. The second part of this work consisted of developing a drying model in order to identify the internal diffusion coefficient and convective mass transfer coefficient from the experimental data. A comparison was made between fitted drying curves, well represented by the Newton's model, and the analytical solutions of the diffusion equation applied to a finite cylinder. Variations of dimensional characteristics, such as the volume and exchange surface of the sample bed, were obtained by X-ray tomography. This technique allowed us to confirm that shrinkage, which is an important phenomenon occurring during sludge and sawdust/sludge mixture drying, must be taken into account. The results showed that both the internal diffusion coefficient and convective mass transfer coefficient were affected by mixing and sawdust addition. The internal diffusion coefficient changed from 7.77 × 10?9 m2/s for the original sludge to 7.01 × 10?9 m2/s for the mixed sludge and then increased to 8.35 × 10?9 m2/s for the mixture of a mass ratio of 4/6. The convective mass transfer coefficient changed from 9.70 × 10?8 m/s for the original sludge to 8.67 × 10?8 m/s for the mixed sludge and then increased to 12.09 × 10?8 m/s for the mixture of a mass ratio of 4/6. These results confirmed that sawdust addition was beneficial to the sludge drying process as the mass transfer efficiency between the air and material increased. Reinforcing the texture of sludge by adding sawdust can increase the drying rate and decrease the drying time, and then the heat energy supply will be reduced significantly. The study also showed that neglecting shrinkage phenomenon resulted in an overestimation for the internal diffusion coefficient for the convective drying of sludges and sawdust/sludge mixtures.  相似文献   

20.
Drying is one of the easily accessible and the most widespread processing technologies that have been used since ancient times for preserving fruits. Drying is an energy-intensive and time-consuming process, so reducing energy demand is important. The main aim of this paper is to analyze the heat and mass transfer characteristics of product in the drying chamber and in addition to this, three-dimensional (3-D) computational fluid dynamic (CFD) simulation was performed. The analyses of heat and mass transfer were investigated theoretically and experimentally in infrared dryer (IRD). The dryer consists of air to air heat recovery unit and proportional temperature controller. Experiments were performed at 0.5 and 0.25?m/s air velocities and at 60 and 65°C apricot surface temperatures which were controlled by three thermocouples contacted on top side of the product. In order to use energy more effectively and improve the drying characteristics of apricot, analyses were performed under different drying conditions. Since the heat recovery unit has a key role in this system, the performance of this unit was investigated and recovered energy ratio was between 58 and 62%. The calculated moisture diffusivity values varied from 1.7?×?10?10 to 1.15?×?10?9 for apricot, and the highest value of average energy efficiency was obtained as 16.43% at 65°C temperature and 0.25?m/s air velocity. Theoretical and experimental results are in line with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号