首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saffron is the most expensive spice and Iran is the largest producer of this crop in the world. Saffron quality is profoundly affected by the drying method. Recent research has shown that hybrid photovoltaic–thermal solar power systems are more efficient in comparison with individual photovoltaic and thermal systems. In addition, heat pump dryers are highly energy efficient. Furthermore, they are suitable for heat-sensitive crops such as saffron. Therefore, in the present study, the performance of a hybrid photovoltaic–thermal solar dryer equipped with a heat pump system was considered for saffron drying, in order to obtain a high-quality product and reduce fossil fuel consumption. The effect of air mass flow rate at three levels (0.008, 0.012, and 0.016 kg/s), drying air temperature at three levels (40, 50, and 60°C), and two different dryer modes (with and without the heat pump unit) on the operating parameters of the dryer was investigated. The results of the investigation showed that total drying time and energy consumption decreased as air flow rate and drying air temperature increased. Applying a heat pump with the dryer led to a reduction in the drying time and energy consumption and an increase in electrical efficiency of the solar collector. The average total energy consumption was reduced by 33% when the dryer was equipped with a heat pump. Maximum values for electrical and thermal efficiency of the solar collector were found to be 10.8 and 28%, respectively. A maximum dryer efficiency of 72% and maximum specific moisture extraction rate (SMER) of 1.16 were obtained at an air flow rate of 0.016 kg/s and air temperature of 60°C when using the heat pump.  相似文献   

2.
Rotary dryers are commonly used in the modern large-scale tobacco drying industry that consumes huge amounts of energy. In fact, rotary dryers are commonly used in chemical industry in general. It is difficult to investigate the drying behavior at industrial scale. A “differential” laboratory rotary dryer was therefore designed and tested. The large diameter of the industrial dryer was preserved, but the width was a section of the industrial dryer. The drying characteristics of cut tobacco from top leaves and bottom leaves with initial moisture contents (22.5?±?1.0% on the wet basis) were studied in the “differential” dryer at air temperatures of 65, 85, 105, 125, and 145°C, respectively. The results show that increasing drying temperature accelerated the drying process, whereas the surface temperatures of the cut tobacco samples stayed in the temperature range of 48–71°C when their moisture contents were reduced to 12.0?±?1.0% (wb). This 12.0% (wb) was required by commercial operations. Uniquely, the drying kinetics was captured using the reaction engineering approach (REA). Although different settings were applied, the model can be used to describe all the data well. The unique relationship between the normalized activation energy and the moisture content is approximated which is independent of the drying air temperature and the tobacco origin. The different drying behaviors for the cut tobacco from top leaves and bottom leaves can be attributed to their different equilibrium isotherms. Through controlling the drying time as predicted by REA model, the outlet moisture contents of cut tobacco from top leaves dried at 95°C/RH0.034/320?s and 115°C/RH0.017/250?s were shown to be 12.3 and 11.8% (wb), with the relative deviations of 2.5 and 1.7%, respectively, and these were within the industrial permissible range.  相似文献   

3.
The objective of the present work is to find the possibility of reducing the high initial moisture content of wet paddy using a small-scale, low-cost pneumatic conveying dryer that can be provided for each farming household. The dryer without a cyclone equipped at the exit of the dryer is studied and the data obtained from this system is compared with those obtained previously from the dryer with a cyclone. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, and drying air temperature from 35 to 70°C. From the experimental results it is found that the drying process with and without a cyclone are able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. For the same experimental conditions, the cyclone-equipped dryer gives around 1% higher decrease of moisture content, 2°C higher average surface temperature of paddy, 3–4% higher average percentage of head rice yield, and 2 kg/h higher average evaporation rate. However, the energy consumption per evaporated mass of water is 20–30% lower than the non-cyclone-equipped dryer.  相似文献   

4.
This article presents experimental performance of a batch-type longan dryer using a biomass burner with air flow reversal and also presents modeling of the longan dryer for drying of whole longan. The dryer essentially consists of a biomass burner and a drying bin with an arrangement for periodic air flow reversal. Three drying runs with loading capacity of 2,000, 1,500, and 1,000 kg of whole longan were carried out. There was no significant difference in temperatures in different positions (except inlet and outlet) inside the dryer (p < 0.05) or moisture content inside the dryer (p < 0.05). Whole longan was dried from an initial moisture content of 74% (wb) to a final moisture content of 14% (wb). The drying time of whole longan in the longan dryer was 60, 54, and 48 h for 2,000, 1,500, and 1,000 kg loading, respectively. The quality of dried product was also good in comparison to the high-quality product in markets.

To simulate the performance of the longan dryer for drying of whole longan, a set of partial differential equations was developed and the equations were solved using the finite difference technique. The numerical solution was programmed in Compaq Visual FORTRAN version 6.5 (Compaq Computer Corp., TX). The simulated moisture contents agreed well with the experimental data. This model can be used to provide the design data and it is also essential for optimal dryer design.  相似文献   

5.
Energy consumption and rice quality are the main concerns of millers and must be assessed to ascertain suitable industrial drying strategy. In this article, industrial paddy drying methods as usually practiced in the BERNAS paddy drying complexes of Malaysia have been evaluated. The analysis showed that the specific electrical and thermal energy consumption varied between 16.19 kWh to 22.07 kWh and 787.22 MJ to 1015.32 MJ, respectively, in single-stage paddy drying (SSPD) using an inclined bed dryer (IBD) to dry each tonne of freshly harvested paddy with average moisture content of 23.35 ± 0.86% wb. On the other hand, the energy consumptions for two-stage paddy drying (TSPD) with a fluidized bed dryer (FBD) followed by IBD were 21.37 kWh/t to 30.69 kWh/t and 666.81 MJ/t to 1083.42 MJ/t, respectively. SSPD at 35–39°C and TSPD using FBD at 120°C as the first stage, followed by IBD as the second stage at lower temperature of 35–39°C yielded 2–3.6% higher head rice yield than paddy-dried by a single stage with IBD using comparatively higher temperature of 40–44°C. Therefore, IBD is recommended to be operated using a temperature of 35–39°C both in single-stage drying and second-stage drying of paddy after fluidized bed drying to obtain quality rice.  相似文献   

6.
The effects of various process variables and equipment components (geometry) on the performance of a screw conveyor dryer (SCD) were studied in terms of the material throughput and its uniformity, dryer load, specific consumption of mechanical energy, and heat transfer rate. The experimental results for drying of fine crystalline solids (50–100 µm particle size and 550 kg/m3 bulk density) in a 3-meter-long uninsulated jacketed screw conveyer dryer with a 0.072-m screw diameter have been used. The hydrodynamic performance of the SCD was also studied using sand particles of 350 µm size and 1500 kg/m3 bulk density (tapped). The maximum specific consumption of mechanical energy for conveying was found to be 1 kJ/kg. Moreover, the flow behavior of the material at the dryer discharge was found to depend strongly on the screw speed and the material feed rate.  相似文献   

7.
Corn, rice, and wheat seeds with an initial moisture content (IMC) of 20–25% wb were dried to moisture content below 18% wb at 40–80°C in a fluidized bed dryer (FBD) and spouted bed dryer (SBD) and the seeds with IMC 18% wb were dried to below 14% wb at air temperatures 18–30°C and relative humidity 60–70% by an in-store dryer (ISD). As a result, it appears that a two-stage drying concept is feasible in drying high-moisture-content seeds due to the high germination rate of dried seeds. Nonetheless, the drying temperature must be carefully selected. A drying temperature of 40°C was clearly safe for all samples, whereas more than 90% of wheat seeds still germinated after drying at 60°C in FBD. Furthermore, drying seeds with IMC 18% wb by ISD was safe under specified drying conditions.  相似文献   

8.
This article is concerned with the energy and exergy analyses of the continuous-convection drying of potato slices. The first and second laws of thermodynamics were used to calculate the energy and exergy. A semi-industrial continuous-band dryer has been designed and used for drying experiments. The equipment has a drying chamber of 2 m length and the inlet air used for drying is heated by gas power. The experiments were conducted on potato slices with thickness of 5 mm at three different air temperatures of 50, 60 and 70°C, drying air mass flow rates of 0.61, 1.22, and 1.83 kg/s and feeding rates of 2.31 × 10?4, 2.78 × 10?4, and 3.48 × 10?4 kg/s. The energy utilization and energy utilization ratio were found to vary between 3.75 and 24.04 kJ/s and 0.1513 and 0.3700, respectively. These values show that only a small proportion of the supplied energy by the heater was used for drying. The exergy loss and exergy efficiency were found to be in the range of 0.5987 to 13.71 kJ/s and 0.5713 to 0.9405, respectively, indicating that the drying process was thermodynamically inefficient and much energy was vented in the exhaust air. In addition, the results showed that the feeding rate and the temperature and flow rate of the drying air had an important effect on energy and exergy use. This knowledge will provide insights into the optimization of a continuous dryer and the operating parameters that causes reduction of energy consumption and losses in continuous drying.  相似文献   

9.
Dynamic Analysis of Drying Energy Consumption   总被引:1,自引:0,他引:1  
A concept of instantaneous drying and energy efficiencies has been applied to analyze energy consumption in a through-circulation conveyor dryer and a batch fluid bed dryer for synthetic rubber. It is shown that the energy performance of the conveyor dryer can be improved by leveling of the moisture content distribution across the material layer by mechanical agitation, and sectioning of the air plenum in order to reduce inlet air temperature in the last two sections of the dryer. It is also shown that drying of a synthetic rubber in the fluid bed dryer is more energy-efficient than in the conveyor dryer, especially in the constant-rate period. Thus, the largest energy savings could be obtained in a two-stage dryer comprised of the plug-flow fluid bed dryer, and the belt conveyor dryer for removal of the bulk and residual water, respectively.  相似文献   

10.
Exergy analysis has been used to assess the intrinsic exergy efficiency of a spray drying system modeled to produce 1.25?kg s?1 of skim milk powder. From an exergy perspective, the dryer has a low exergy efficiency of 38% (on an evaporation basis), while the efficiencies associated with the mass transfer and heat transfer are 94% (thermomechanical efficiency) and 30% (transiting exergy efficiency), respectively. The improvement potential of 575?kW, of the 722?kW energy flow in the feed, also shows that the exergy efficiencies of spray dryers are intrinsically small. Reviewing exergy efficiency factors, there appears to be no universal efficiency factor for an exergy analysis. The inevitable (INE) exergy loss method is a potential shortcut technique based on the Carnot efficiency and first law analysis. There are some limitations on using the INE method for processes that are not exclusively thermal; in those cases, an entropy balance (second law property) is more appropriate. The INE method still shows potential as a starting basis of comparison because it shows the scale and the efficiency together, which is important for targeting areas for process improvement without doing a full exergy analysis. This work is a short review of the work on dryer exergy efficiency, mainly focusing on the various factors which are used, followed by a discussion and case study testing each factor to find a potential optimization method and a discussion on each factors merits.  相似文献   

11.
《Drying Technology》2013,31(10):2281-2290
Abstract

A concept of instantaneous drying and energy efficiencies has been applied to analyze energy consumption in a through-circulation conveyor dryer and a batch fluid bed dryer for synthetic rubber. It is shown that the energy performance of the conveyor dryer can be improved by leveling of the moisture content distribution across the material layer by mechanical agitation, and sectioning of the air plenum in order to reduce inlet air temperature in the last two sections of the dryer. It is also shown that drying of a synthetic rubber in the fluid bed dryer is more energy-efficient than in the conveyor dryer, especially in the constant-rate period. Thus, the largest energy savings could be obtained in a two-stage dryer comprised of the plug-flow fluid bed dryer, and the belt conveyor dryer for removal of the bulk and residual water, respectively.  相似文献   

12.
Mathematical modeling and computer simulation of grain drying are the major emphasis of grain drying research in CAU (China Agricultural University). Since 1988, research on simulation of concurrent flow, counterflow, cross-flow, and mixed-flow grain dryers has been accomplished. The developed mixed-flow grain drying software has been used in analysis of dryer performance, design, and optimization of new grain dryers and management of existing ones. Effect of size, shape, number of rows, and arrangement of air duct on the performance of a mixed-flow grain dryer has been studied.  相似文献   

13.
Abstract:

In 2000, the U.K. government's Energy Efficiency Best Practice Programme commissioned a survey to determine the energy consumption of spray dryers within the chemicals, foods, and ceramics industries. The results of this survey, which included dryers having evaporation rates ranging from 0.1 to 12 t/h, revealed values of the specific energy consumption E s varying from around 3 to 20 GJ/t water evaporated. The average for all dryers included in the survey was 4.87 GJ/t. The fuel-to-electricity consumption ratio averaged around 27. The data obtained in the survey were interpreted with the aid of a newly developed model that enabled the performance of a particular dryer to be compared with that of its ideal adiabatic counterpart. Using the model, it was estimated that around 29% of the energy supplied to the dryers included in the survey was being wasted.  相似文献   

14.
《Drying Technology》2013,31(4-5):1035-1051
ABSTRACT

Drying of okara, an insoluble pulp residue waste byproduct of tofu production, was investigated in a continuously moving bed of inert particles subjected to vortex-like motion. The experimental variables in their respective ranges included the mass of Teflon pellets used as inert particles (0.4–1.2 kg), feed rate (0.5–1.4 kg/h), inlet air temperature (100–145°C) and airflow rate (195–271 m3/h). The dryer showed good performance in general and produced dry okara with moisture content ranging from 5 to 33% wb depending upon the operating conditions. The product recovery ranged from 80 to 90% on dry basis in most experiments. The specific water evaporation rate in okara drying increased with increasing of the feed rate and mass of Teflon pellets. However, the specific heat consumption decreased with an increase in the okara feed rate. Results showed that specific heat consumption for okara drying in a bed of inert particles was about 3 to 4 times higher in comparison with that of free water.  相似文献   

15.
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s?1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm?2 at an air velocity of 0.5 m/s?1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20–4.52 × 10?11 m2 s?1 and 3.04–4.79 × 10?11 m2/s?1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

16.
We have developed models to determine the radiative heat transfer of infrared dryers. Using the models, the efficiencies of several IR constructions are calculated. The radiation properties of all parts of the IR dryer are measured with an IT-IR spectrometer using integrating sphere techniques. With these models and measured results, the total efficiencies of several dryer constructions are calculated for: an electric dryer with a pambolic mirror, an elecmc dryer with a flat ceramic mirror, and a gas-fired dryer. The effect of a back reflector on these dryers is also calculated. The efficiencies of all these dryers are compared to each other.  相似文献   

17.
This research aims at modeling the rotary drying of carton packaging waste and analyzing the energy performance of the process. Drying data were obtained in a semi-pilot rotary dryer, 0.45 m diameter and 2.7 m rotating drum long, operating with an air velocity of 1 m/s and air inlet temperature of 90°C and 10 rpm. Under the operating conditions employed, the analysis of the data showed that the energy performance of the drying process increased from 5 to 75% as the inlet wet solid feed rate increased from 1.8 to 19 kg/h. In addition, at this latter wet-solid feed rate, the reduction of the air velocity in the dryer to 0.8 m/s also led to an increase in the performance of drying process from 80 to 94%. Furthermore, with a 95% confidence interval, the model used was adequate to predict the air and solid temperature as well as the air humidity and the solids moisture content.  相似文献   

18.
ABSTRACT

Long- and medium-grain rice were dried in a commercial multi-stage concurrent-flow dryer. Drying air temperatures varied fran 82°C to 177°C. Over six points of moisture were removed in one dryer pass without affecting the rice head-yield. Energy consumption of the dryers was half that of conventional rice dryers. Simulation played a major role in the design of the mUlti-stage concurrent-flow rice dryers.  相似文献   

19.
The dryer is required for drying of grain as well as drying of the processed products in small catchment agro processing centers in the developing world. However, due to varied material characteristics of grain and secondary processed product, two entirely different types of dryers are required. The grain is dried in a recirculatory dryer, whereas processed product is dried in a tray dryer, where it is frequently mixed and trays are also intermittently changed. To avoid the need for two dryers, a novel design of a low-cost hot air dryer was developed where just by changing the trays the dryer can be converted from an LSU grain dryer to a tray-type product dryer. The dryer was tested for drying soybean grain as well as processed soy products like blanched soybean dal and soyflakes. The capacity of the dryer was 100 kg/batch in a tray dryer with each tray accommodating 10 kg of wet material. In case of LSU mode, the capacity of the dryer was 250 kg of grain per batch. The drying time required was 5 h for 250 kg of wet soybean from 24 to 10% moisture content, whereas in a tray dryer 100 kg blanched soybean dal was dried from 60 to 10% in 5 h and 100 kg of soyflakes from 25% moisture content to 10% moisture in 1.75 h. The cost of the dryer is estimated at US$580.00 and it can be fabricated in a moderately equipped workshop in developing countries.  相似文献   

20.
Pneumatic conveying drying (PCD) is a combination of heat and mass transfer and pneumatic handling technology. This technology has been extensively used in chemical, pharmaceutical, and food industries, as well as many others. The PCD technique is beneficial for agricultural products, because it can achieve high-quality drying with reduced heat damage in a very short time. In this study, one-dimensional and three-dimensional mathematical models for the drying of sawdust particles in a pneumatic dryer were developed and verified with experiments. The three-dimensional modeling was done with a computational fluid dynamics (CFD) package (ANSYS FLUENT, Ver. 13.0, Ansys, Inc.), in which the gas phase is modeled as a continuum using the Euler approach, and the droplet/particle phase is modeled by a discrete phase model with a Lagrange approach. One-dimensional analysis was performed in MATLAB (Ver. 7.0). The experiments were carried out to validate the model in a pneumatic dryer with a horizontal length of 1 m, vertical height of 1.1 m, and diameter of 0.14 m. Sawdust, a raw material used for producing pellets, was prepared from well-seasoned pinewood timber. The initial moisture content of the sawdust was 22% (wb). The hot air inlet temperature in the dryer was fixed at 100°C. The variations in air pressure, air velocity, air temperature, and particle moisture content were investigated along the length of the dryer. The final moisture contents of sawdust and air temperature were reduced by 2% (wb) and 5°C, respectively. The simulated values were in good agreement with the experimental values. The developed model was then employed for the design of a pilot-scale pneumatic dryer (length 7 m and diameter 0.14 m). The final moisture content of the sawdust particles was reduced to 14% (wb) when the dryer length was increased from 1 to 7 m. In addition, the modeling was performed using buffers in the pilot-scale dryers. The use of a buffer noticeably increased the drying efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号