首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(2):333-347
Abstract

Homogeneous membranes based on fullerene‐polyphenylene oxide compositions containing up to 2 wt% fullerene C60 were prepared. The effect of fullerene addition on PPO transport properties was studied in gas separation and pervaporation processes. Permeability coefficients of H2, O2, N2, CH4, and CO2 were measured; a correlation between gas transport properties and membrane free volume was established. Pervaporation properties were studied for the system with ethyl acetate synthesis reaction: quaternary system ethanol—acetic acid—water—ethyl acetate and some constituent binary and ternary mixtures. Pervaporation in binary systems, ethanol–water and ethyl acetate–water was considered with the use of the data on sorption capacities and interaction parameters. In pervaporation of a quaternary reacting mixture, the permeate containing essentially ethyl acetate was obtained. Results show that membranes with fullerene additives exhibit improved transport properties.  相似文献   

2.
NCO‐terminated polyurethane membranes were prepared using diisocyanate, diol, and trimethylolpropane (TMP) using an NCO/OH ratio of 1.6 : 1. Prepolymer was chain‐extended using cellulose acetate butyrate (CAB) in the ratios of 2 : 1, 4 : 1, and 3 : 1 of NCO/OH. Polyurethane (PU) membranes were characterized by differential scanning calorimeter (DSC) and thermogravimetry (TGA) to investigate their thermal properties. Equilibrium sorption studies were carried out at 30°C in water and ethyl acetate media as well as in their binary mixtures. The influence of CAB on pervaporation (PV) separation of an ethyl acetate/water (92/8, w/w, i.e., azeotropic composition) mixture was investigated. Membranes in this study showed a selectivity of 42.42 with a flux value of 0.187 kg/m/h for 3 : 1% NCO/OH containing PU membrane. In order to gain a more detailed picture of the molecular transport phenomenon, we performed the sorption gravimetric experiments at 30°, 35°, 40°, and 50°C to compute diffusion, swelling, sorption, and permeability coefficients of PU membranes in the azeotropic mixture of ethyl acetate and water. Activation parameters for diffusion and permeation were computed from the Arrhenius equation to understand the polymer/solvent interactions. Sorption trends and diffusion anomalies were established through an empirical equation after estimating the diffusion parameters. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3405–3414, 2007  相似文献   

3.
Hydrophobic composite membranes with a crosslinked poly(dimethylsiloxane)‐poly(methyl hydrogen siloxane) selective layer were prepared by using a new laboratory made catalyst agent. The pervaporation separation of five organic solvent–water mixtures was carried out with these composite membranes, together with swelling experiments in the same feed mixtures. The volatile organic compounds employed were ethanol, methanol, 1‐butanol, acetone, and ethyl acetate. The pervaporation and swelling experiments revealed that both the 1‐butanol and the ethyl acetate solutions showed the highest affinity for the composite membrane. When these components were employed as feed solutions, the membranes showed both high selectivity and high permeation. Mechanical–dynamical experiments of swollen and nonswollen composite membranes were also performed. The relaxation spectra were analyzed in terms of the interaction of the components of the different mixtures with the composite membrane, and the free volume corresponding to the each sample was obtained. Once the membranes had reached an equilibrium swelling, a decrease in the free volume was observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 546–556, 2001  相似文献   

4.
Three imide‐containing poly(amic acids) were synthesized and used for homogeneous and composite membrane preparation. The transport properties of composite membranes consisting of an imide‐containing poly(amic acid) top layer on an asymmetric porous poly(phenylene oxide) support were studied in the pervaporation of aqueous solutions of organic liquids (ethanol, isopropanol, acetone, and ethylacetate) and organic/organic mixtures (ethylacetate/ethanol, methanol/cyclohexane). For most of the aqueous/organic mixtures, the composite membranes exhibited dehydration properties. Dilute aqueous solutions of ethylacetate were an exception. In these solutions, the composite membranes exhibited organophilic properties, high permeability, and selectivity with respect to ethylacetate. In the pervaporation of methanol/cyclohexane mixtures, methanol was removed with very high selectivity. To account for specific features of pervaporation on the composite membranes, the sorption and transport properties of homogeneous membranes prepared from polymers comprising the composite membrane [imide‐containing poly(amic acids) and poly(phenylene oxide)] were studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2361–2368, 2003  相似文献   

5.
Inorganic–organic hybrid membrane materials always exhibit high pervaporation performance for organic azeotropic mixtures. Here, MCM‐41 silica spheres were modified and embedded into polydimethylsiloxane, and a new filled membrane was obtained. The membrane was used in dimethylcarbonate (DMC) removal from DMC/methanol azeotropic mixture by pervaporation. The effect of membrane preparation parameters including modified MCM‐41 silica spheres loading, solvent concentration, and feed temperature on pervaporation properties was systematically studied. The results showed that separation factor and total flux of the filled membranes could be increased simultaneously. Additionally, the sorption and diffusion selectivity of the filled membranes were measured and discussed. The results demonstrated that diffusion selectivity was greatly enhanced by incorporating. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
《分离科学与技术》2012,47(17):2513-2523
Novel mixed matrix membranes were obtained by the dispersion of montmorillonite (MMT) nanoparticles in poly(phenylene-iso-phtalamide) (PA) matrix. Membrane structure was determined on the basis of density measurement and morphology study by SEM. The effect of MMT inclusion on membrane hydrophilic properties was estimated by the measurement of contact angles of water, methanol, and toluene, respectively, and the calculation of surface tension. Transport properties of PA/MMT membranes were studied by use of swelling and pervaporation tests. The prepared membranes were used in the pervaporation of methanol–toluene mixtures. Total fluxes and separation factors, such as permeabilities and selectivities, were determined. It was established that the improvement of some physicochemical properties and transport parameters occurs only by inclusion up to 3 wt% MMT in the PA matrix.  相似文献   

7.
Since pervaporation process is the coupling of solution and diffusion mechanisms, a sorption study was carried out with membranes prepared by cross-linking polyvinylalcohol (PVA) and polidimethylsiloxane (PDMS). Tartaric acid (Tac) was used as the cross-linking agent for PVA, and a commercial cross-linking agent was used for PDMS. Sorption experiments were carried out at 30-50°C temperature range in pure water and ethyl acetate using the films prepared. The PVA and PDMS films prepared preferentially sorb water and ethylacetate, respectively. A pervaporation study at 30°C was carried out for pure ethylacetate and pure water, and mixtures of ethylacetate containing 2 and 2.5 wt% water using 100 w m thick PVA membrane. The results indicate that the PVA membrane prepared is extremely selective for water.  相似文献   

8.
In this study using poly(vinylalcohol) (PVOH) membranes cross-linked with tartaric acid (Tac) desorption experiments were performed for selected concentrations of binary ethyl acetate (EtAc)-water mixture at temperatures of 30°, 40°, and 50°C to determine sorption of components. Sorption values measured were compared with those estimated by the Flory-Huggins approach. Additionally, desorption results were compared with pervaporation results of another study in terms of solution-diffusion theory, and the effect of thermodynamic interactions on selective transport of the binary mixture and membrane system was investigated. The results obtained show that selective transport of EtAc-water mixture was influenced by increasing temperature and water content in the feed. It is shown that preferential sorption is more effective for pervaporation selectivity than diffusion selectivity.  相似文献   

9.
Since pervaporation process is the coupling of solution and diffusion mechanisms, a sorption study was carried out with membranes prepared by cross-linking polyvinylalcohol (PVA) and polidimethylsiloxane (PDMS). Tartaric acid (Tac) was used as the cross-linking agent for PVA, and a commercial cross-linking agent was used for PDMS. Sorption experiments were carried out at 30-50°C temperature range in pure water and ethyl acetate using the films prepared. The PVA and PDMS films prepared preferentially sorb water and ethylacetate, respectively. A pervaporation study at 30°C was carried out for pure ethylacetate and pure water, and mixtures of ethylacetate containing 2 and 2.5 wt% water using 100 μm thick PVA membrane. The results indicate that the PVA membrane prepared is extremely selective for water.  相似文献   

10.
《分离科学与技术》2012,47(6):1143-1156
Abstract

For pervaporation separation of ethanol and ethyl tert-butyl ether mixtures, a cellulose acetate propionate membrane was chosen as the experimental membrane because of its high selectivity and good mass fluxes. The properties of the membranes were evaluated by the pervaporation separation of mixtures of ethyl tert-butyl ether/ethanol and the sorption experiments. The experimental results showed that the selectivity and the permeates depend on the ethanol concentration in the feed and the experimental temperature. With increases of the ethanol weight fraction in the feed and the temperature, the total and partial mass fluxes increased. With respect to the temperature, ethanol mass flux obeys the Arrhenius equation. The selectivity of this membrane decreases as the temperature and the ethanol concentration in the feed increase. This membrane shows special characteristics at the azeotropic composition. In the vicinity of the azeotropic point, minimum values of ethanol concentration in the permeate and in sorption solution are obtained. The swelling ratios increase when temperature and the ethanol concentration in the feed are increasing. The ethanol concentration in the sorption solution is also influenced by the temperature and the mixture's composition. When the temperature increases, the sorption selectivity of the membrane decreases.  相似文献   

11.
In this study using poly(vinylalcohol) (PVOH) membranes cross-linked with tartaric acid (Tac) desorption experiments were performed for selected concentrations of binary ethyl acetate (EtAc)-water mixture at temperatures of 30°, 40°, and 50°C to determine sorption of components. Sorption values measured were compared with those estimated by the Flory-Huggins approach. Additionally, desorption results were compared with pervaporation results of another study in terms of solution-diffusion theory, and the effect of thermodynamic interactions on selective transport of the binary mixture and membrane system was investigated. The results obtained show that selective transport of EtAc-water mixture was influenced by increasing temperature and water content in the feed. It is shown that preferential sorption is more effective for pervaporation selectivity than diffusion selectivity.  相似文献   

12.
The composite membranes of acrylate polymers and porous substrate were prepared. The separation of the organic solvent–water mixtures and the organic solvent–organic solvent mixtures through these membranes by pervaporation was investigated. The acrylate copolymer membrane showed the organic solvent permselectivity for the separation of the organic solvent–water mixture, especially for the chlorinated hydrocarbon–water mixture separation. The high organic solvent permselectivity should be governed by solubility selectivity. The influence of the ester residue of acrylate on the phenol–water mixture separation was observed. The copolymerization of the macromonomers containing the polystyrene, poly(methyl methacrylate), and polydimethylsiloxane chain had a small effect on the separation of the chlorinated hydrocarbon–water mixture. High flux and low selectivity of organic solvent were observed in the case of the organic solvent mixture separation through the n-butylacrylate membrane. The difference of permeability of organic solvent was observed for the acrylate copolymer which has various structures of ester residue. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 1483–1494, 1998  相似文献   

13.
《分离科学与技术》2012,47(3):601-617
ABSTRACT

In the course of the present study, the pervaporative dehydration of two ternary mixtures: ethanol/n-butanol/water and ethanol/ethyl acetate/water were investigated through hydrophilic polymer composite PERVAP 1210 membrane. The effects of temperature and the concentrations of water and organic components on permeation were studied through pervaporation experiments. The influence of Hansen solubility parameters of the components and mixtures on their permeation was also examined. It has been found that changes of organic ratios in the feed solution affect organic permeation due to mutual interactions and flux coupling. This interaction was built in a suggested semi-empirical mass-transport model for ternary mixtures with optional simplifications. The modeled partial fluxes are in good accordance with the measured values.  相似文献   

14.
Poly(1-phenyl-1-propyne)/polydimethysiloxane (PPP/PDMS) graft copolymer membranes having various PDMS content were prepared by solvent casting method, and the permeation characteristics at pervaporation were examined upon the aqueous solutions containing organic liquids such as alcohols, acetone, dioxane, acetonitrile, pyridine, and DMF. At pervaporation of ethanol/water mixture, preferential permeation of ethanol was observed for all the copolymer membranes, although PPP membrane showed water permselectivity. The permselectivity of the copolymer membrane also depended on operation temperature, but was independent on the thickness of the membrane. Furthermore, an excellent permselectivity of organic liquids was observed at the pervaporation of several organic liquid/water mixtures except in the case of DMF/water mixture. Observed high selectivity is thought to be due to the depression of the membrane swelling and the high solubility of the liquids into the membrane.  相似文献   

15.
The separation of ethanol/ethyl‐tertiobutylether mixtures by pervaporation was studied with new membranes prepared from N‐vinyl‐pyrrolidinone (NVP) and N‐[3‐(trimethylamoniopropyl)]methacrylamidemethylsulfate) (TMA). The pervaporation results showed that highly EtOH selective membranes could be obtained from PVP blends and from pyrrolidinone‐based crosslinked copolymers. The influences of the polymer blend composition and the role of the polymer microstructures on the membrane properties were investigated. Whatever the exact NVP/TMA composition used, the membranes strongly favored the pervaporation of ethanol. The ethanol selectivity was higher for the lower PVP/TMA ratio. On the one hand, these results were ascribed to the high pyrrolidinone residues content, which is responsible of the enhanced EtOH sorption affinity. The observed permeation selectivity was in agreement with the swelling data also recorded with the different polymers, showing higher affinity for ethanol with PVP‐enriched materials compared with TMA ones. This is a direct consequence of the Lewis base feature of pyrrolidinone sites towards EtOH molecules. On the other hand, the TMA residues improved the overall stability and selectivity of the membranes thanks to crosslinking reactions, which were induced by thermal treatment. A close comparison made between polymer blend and copolymer pervaporation results helped to clarify the TMA role of the membrane transport properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3622–3630, 2006  相似文献   

16.
A new kind of membrane was prepared by blending poly(acrylic acid) with cellulose acetate propionate for the separation of ethyl tert—butyl ether and ethanol mixtures. The properties of the membranes were evaluated by the pervaporation separation of mixtures of ethyl tert—butyl ether/ethanol and the sorption experiments. The experimental results showed that the selectivity and the fluxes of this membrane depend on the blend composition and on that of processed feed mixtures. With respect to temperature, the ethanol fluxes obey the Arrhenius equation. The fluxes increase with the increase of the poly(acrylic acid) content in the blended membrane, the ethanol concentration in the feed, and the experimental temperature. But the selectivity decreases as the poly(acrylic acid) content and the experimental temperature are raised up. When the feed composition is varied, this membrane shows the special characteristics at the azeotropic composition. In the vicinity of the azeotropic point, the minimum values of ethanol concentration in the permeate and in sorption solution are obtained. The swelling ratios increase with an increase in the temperature and the ethanol concentration. The ethanol concentration in the sorption solution is also influenced by the temperature and composition of the mixtures. When the temperature increases, the sorption selectivity of the membrane decreases. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1631–1638, 1997  相似文献   

17.
醋酸丁酯酯化反应体系组分在PEBA膜中的吸附性能   总被引:2,自引:0,他引:2  
采用实验和模型计算两种方法研究了醋酸丁酯酯化反应体系组分在涂布法制备的用于渗透汽化分离的PEBA膜材料中的吸附行为.分别用Flory-Huggins和ONIQUAC模型预测了全浓度范围内的水/有机物二元混合液在PEBA膜中的吸附量.用溶解度参数法得到Flory-Huggins模型中的相互作用参数;用纯溶剂与膜的平衡吸附数据拟合得到UNIOUAC模型中溶剂与膜的二元相互作用参数,而溶剂之间的二元相互作用参数可用文献中汽液平衡数据关联拟合.结果表明PEBA膜材料的亲有机物性能良好,对于四种组分的选择吸附性顺序为:醋酸正丁酯>正丁醇>醋酸>水,并且两种模型的计算结果基本一致.  相似文献   

18.
The pervaporation of pure water through homogeneous aromatic polyamide membranes was investigated. The structure of the prepared membranes was controlled by varying the solvent evaporation times before the gelation step from 5 min to 240 min. The permeation flux of pure water decreased rapidly when the solvent evaporation time increased from 5 min to 30 min, and the decrease was rather moderate at higher evaporation times. Vapor and liquid sorption measurements were used to characterize the membranes. The amount of vapor sorption at a given relative pressure increased with an increase in the solvent evaporation time. The specific surface area of the membranes, calculated from the vapor sorption isotherm, increased with evaporation time up to 30 min, and remained constant thereafter. Liquid sorption volume, on the other hand, decreased monotonically with an increase in evaporation time. The formation of channels in the membrane is used to explain the morphology change during the solvent evaporation. The increase in the solvent evaporation time gradually increases the number of the channels in the membrane and decreases their average size. Good correlation was observed between the average size of the channels (represented by the ratio of specific volume to the specific surface area) and the parameters associated with pervaporation transport. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
《分离科学与技术》2012,47(12):2733-2753
Abstract

A study was conducted to evaluate membrane pervaporation for the separation of diacetone alcohol‐water mixtures using commercially available membranes for organic enrichment and dehydration. Empirical correlations for the effect of the process parameters of feed concentration, feed temperature, permeate‐side pressure, and scale‐up were developed. The solvent‐water mixture was successfully separated with a poly(vinyl alcohol) based Sulzer PERVAP 2210 dehydration membrane. Various dehydration membranes were evaluated and a comparison of the flux and separation factor was made. The membrane performance in separating acetone‐water mixtures was also studied. An overall model to predict the membrane area needed for a scale‐up was developed based on the results.  相似文献   

20.
Pervaporation composite membranes were prepared with a three‐layer structure: a PP support, a PEI microporous structure, and a PDMS–PMHS selective layer. Swelling tests were performed in water, ethyl acetate, and four different ethyl acetate–water mixtures, to calculate the diffusional and swelling parameters. Moreover, the dynamic–mechanical properties of the membranes were obtained before and after the swelling experiments, and their relaxation spectra were characterized with the Fuoss–Kirkwood equation and analyzed in terms of the free volume parameter. It was found that the ethyl acetate possesses high affinity with the composite membranes and that the absorption of these small molecules substantially modifies the viscoelastic behavior and structure of the active layer. The combination of swelling experiments and the study of the mechanical relaxations proved to be an appropriate technique to investigate the behavior of pervaporation membranes immersed in different mixtures. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1384–1393, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号