首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work analyzed aspects of the fluid dynamics of the conventional concurrent dryer equipped with lifting flights and their influence on the performance of a rotary dryer. The drying of granulated fertilizers (GTSP) in a conventional concurrent rotary dryer was experimentally investigated and compared with a modified configuration known as the roto‐aerated dryer. The main feature of this new dryer is the presence of an aerated system consisting of a central pipe (encased in the drum) from which a series of mini‐pipes lead hot air directly to the particle bed, flowing at the bottom (without flights). The results obtained confirm the superior performance of the roto‐aerated dryer due to its more effective gas‐particle contact.  相似文献   

2.
Conventional rotary dryers are equipped with flights placed parallel along the length of the shell to promote a rain of solids across the dryer section. In the roto-aerated dryer the hot air flows through the particles that run on the bottom of the drum through a series of mini-pipes and there is no cascading. This study analyzed heat and mass transfer modeling between the air and the fertilizer particles in conventional rotary and roto-aerated dryers, as well as the simulation results with the experimental data. A good agreement between the simulated and experimental results was obtained for the two rotary dryer configurations analyzed.  相似文献   

3.
《Drying Technology》2013,31(7):1603-1620
Abstract

Drying kinetics of tomato was studied by using heat pump dryer (HPD) and electric resistance dryers with parallel and crossed airflow. The performance of both systems was evaluated and compared and the influence of temperature, air velocity, and tomato type on the drying kinetics was analyzed. The use of HPD showed to be adequate in the drying process of tomatoes, mainly in relation to the conversion rate of electric energy into thermal energy. The heat pump effective coefficient of performance (COPHT,EF) was between 2.56 and 2.68, with an energy economy of about 40% when compared to the drying system with electric resistance. The Page model could be used to predict drying time of tomato and statistical analysis showed that the model parameters were mainly affected by drying temperature.  相似文献   

4.
Drying kinetics of tomato was studied by using heat pump dryer (HPD) and electric resistance dryers with parallel and crossed airflow. The performance of both systems was evaluated and compared and the influence of temperature, air velocity, and tomato type on the drying kinetics was analyzed. The use of HPD showed to be adequate in the drying process of tomatoes, mainly in relation to the conversion rate of electric energy into thermal energy. The heat pump effective coefficient of performance (COPHT,EF) was between 2.56 and 2.68, with an energy economy of about 40% when compared to the drying system with electric resistance. The Page model could be used to predict drying time of tomato and statistical analysis showed that the model parameters were mainly affected by drying temperature.  相似文献   

5.
Qixiang Xu 《Drying Technology》2013,31(11):1344-1350
Woody biomass in the form of forestry industry residues has been recognized as a promising resource for renewable energy and liquid fuels. Drying of the woody biomass is one of the key operations in development of the energy conversion technologies. Rotary drying is an effective method due to the enhanced contact between the solids and the drying medium (hot air). In this work, a mathematical model was developed to simulate the drying of the woody biomass as chips in a rotary dryer, based on energy and mass balance and transfer, experimental drying kinetics of the wood chips, and using literature correlations for the residence time. A new correlation between the theoretical maximum drying rate and the actual constant drying rate for the wood chips was obtained from the drying experiments, which was incorporated in the drying model. The model was applied both for cocurrent and countercurrent rotary dryers, and the simulation results are consistent with the observed trend. However, the accuracy of the model needs to be further investigated through experimental validation of the residence time correlation.  相似文献   

6.
This research aims at modeling the rotary drying of carton packaging waste and analyzing the energy performance of the process. Drying data were obtained in a semi-pilot rotary dryer, 0.45 m diameter and 2.7 m rotating drum long, operating with an air velocity of 1 m/s and air inlet temperature of 90°C and 10 rpm. Under the operating conditions employed, the analysis of the data showed that the energy performance of the drying process increased from 5 to 75% as the inlet wet solid feed rate increased from 1.8 to 19 kg/h. In addition, at this latter wet-solid feed rate, the reduction of the air velocity in the dryer to 0.8 m/s also led to an increase in the performance of drying process from 80 to 94%. Furthermore, with a 95% confidence interval, the model used was adequate to predict the air and solid temperature as well as the air humidity and the solids moisture content.  相似文献   

7.
影响喷雾干燥法烟气脱硫过程的因素很多,如液滴初始粒径、液滴初始速度、烟气入口温度、烟气入口速度和SO2入口浓度等。在分析喷雾干燥塔内气液两相流动及单个粒子与气相之间传热传质过程的基础上,建立了喷雾干燥法烟气脱硫过程的数学模型,模拟分析并讨论了上述各因素对脱硫效率的影响,并通过实验对模型进行了验证。  相似文献   

8.
A model which joins the overall design algorithm of a rotary dryer with the drying kinetics equations derived from experimental data and with a finite segment algorithm is implemented in order to verify the dryer dimensions obtained from a basic sizing procedure. Total energy and mass balances and well-known correlations for the overall heat transfer coefficient are employed to develop it. Moreover, a one-dimensional finite segment model is solved to obtain the length profiles of temperature and water content for the air and solid phases. An experimental correlation for the mass transfer coefficient between solid and air phases is included in the finite segment model. The chosen heat transfer unit number for the basic sizing is verified with the outlet temperature and water content calculated by the finite segment scheme.  相似文献   

9.
Closed-loop drying systems are an attractive alternative to conventional drying systems because they provide a wide range of potential advantages. Consequently, type of drying process is attracting increased interest. Rotary drying of wood particles can be assumed as an incorporated process involving fluid–solid interactions and simultaneous heat and mass transfer within and between the particles. Understanding these mechanisms during rotary drying processes may result in determination of the optimum drying parameters and improved dryer design. In this study, due to the complexity and nonlinearity of the momentum, heat, and mass transfer equations, a computerized mathematical model of a closed-loop triple-pass concurrent rotary dryer was developed to simulate the drying behavior of poplar wood particles within the dryer drums. Wood particle moisture content and temperature, drying air temperature, and drying air humidity ratio along the drums lengths can be simulated using this model. The model presented in this work has been shown to successfully predict the steady-state behavior of a concurrent rotary dryer and can be used to analyze the effects of various drying process parameters on the performance of the closed-loop triple-pass rotary dryer to determine the optimum drying parameters. The model was also used to simulate the performance of industrial closed-loop rotary dryers under various operating conditions.  相似文献   

10.
聚丙烯流化床降温干燥数学模拟   总被引:3,自引:0,他引:3  
分析了聚丙烯流化床干燥器(D502)的特点,根据其特点建立了降温干燥数学模型,确定了模型成立的条件,采用工业数据进行了计算分析,该模型具有实用价值。  相似文献   

11.
This study investigates the behavior of fruit and vegetable samples during drying. The experimental data are fitted to several different thin-layer drying models. Regression analysis is used to determine model parameters, while statistical indicators serve to evaluate the goodness of fit. The power function model gives the best fit for all examined samples. Based on this model, different drying and heat storage technologies can be combined to ensure that the required residual moisture content of an agricultural product is reached. It is demonstrated on the case of a specific Togolese processing plant that under favorable conditions, fossil fuel consumption can be decreased by 33 %.  相似文献   

12.
İlhan Ceylan 《Drying Technology》2013,31(12):1469-1476
In this research, poplar and pine timbers have been dried in heat pump dryer functioning on the basis of 24-h operation. The change in weight in all of the timbers was followed in the drying chamber and drying stopped when the desired weight was achieved. Initial moisture content of the poplar timbers was 1.28 kg water/kg dry matter, and the moisture content was reduced to 0.15 kg water/kg dry matter moisture content in 70 h; the moisture content of the pine timbers, which was 0.60 kg water/kg dry matter, was reduced to the same amount in 50 h. Drying air temperature, relative humidity, and stack weight were measured and collected during drying and saved on a computer and analyzed afterwards. The moisture ratios were analyzed with Statgraphic computer program by using semitheoretical models and empirical values. Correlation and standard error of estimation (SEE) and R 2 values were achieved.  相似文献   

13.
A computerized mathematical model was developed to predict fractional drying and aerodynamic separation of alfalfa into leaves and stems in one process in a rotary dryer. Aerodynamic separation was characterized by separation efficiency or the total amount of the desired component (leaf or stem) recovered, relative to the amount entering the process, and by purity of leaf or stem component collected at exit ports of the dryer. The model development assumed 100% separation efficiency and purity. The model was validated by comparing model predicted results with measured experimental and field test data obtained from a small industrial rotary dryer and a full-scale industrial dryer. Changes in leaf, stem, and drying gas moisture contents and temperatures were measured and predicted by the model under various drying conditions. The model-predicted results agreed well with measured data. The model was also used to simulate the performance of industrial rotary dryers under various operating conditions. The model can be used to determine the optimum drying and aerodynamic separation parameters. It can also be used to design and redesign new and existing industrial rotary dryers in order to combine drying and aerodynamic separation into one process.  相似文献   

14.
A computerized mathematical model was developed to predict fractional drying and aerodynamic separation of alfalfa into leaves and stems in one process in a rotary dryer. Aerodynamic separation was characterized by separation efficiency or the total amount of the desired component (leaf or stem) recovered, relative to the amount entering the process, and by purity of leaf or stem component collected at exit ports of the dryer. The model development assumed 100% separation efficiency and purity. The model was validated by comparing model predicted results with measured experimental and field test data obtained from a small industrial rotary dryer and a full-scale industrial dryer. Changes in leaf, stem, and drying gas moisture contents and temperatures were measured and predicted by the model under various drying conditions. The model-predicted results agreed well with measured data. The model was also used to simulate the performance of industrial rotary dryers under various operating conditions. The model can be used to determine the optimum drying and aerodynamic separation parameters. It can also be used to design and redesign new and existing industrial rotary dryers in order to combine drying and aerodynamic separation into one process.  相似文献   

15.
Semicontinuous industrial tunnel dryers were simulated and optimized for concurrent and countercurrent configurations. Mass and energy balances for the solid and gas phase were used to describe the operation of the dryer and a semi-empirical model for the mass transfer rate; the drying rate equation parameters were fitted using experimental data for Italy grapes. The simulation programs coded in Fortran 90 calculate the moisture and temperature profiles for grapes and humidity and temperature for air throughout the tunnel, cycle time, recirculation ratio, thermal load, and fresh air flow rate. The optimization minimizes the energy input considering the degradation of ascorbic acid in the fruit as the main constraint.  相似文献   

16.

Plug flow fluid bed dryers (PFFBD) have been used for drying of particulate solids such as salts, ion exchange resins, grains, and a variety of other products. The present article describes the use of a mathematical model for the scale-up of lab-scale batch fluidization data to design an industrial-scale PFFBD. Axial dispersion theory was used in conjunction with the tanks-in-series model to describe the non-ideal flow. The model was implemented in Matlab 6.5 and it can be used for easily fluidizing particulate materials. The proposed model is capable of analyzing both the exponential falling rate and constant rate drying periods. The model predicts the required dryer dimensions for a given throughput and desired final moisture content. The model can also be used to study the effect of different process parameters such as solids feed rate, inlet air velocity, and temperature on the required dryer dimensions and it can also be used to predict the moisture and temperature profiles along the length of the PFFBD.  相似文献   

17.
Plug flow fluid bed dryers (PFFBD) have been used for drying of particulate solids such as salts, ion exchange resins, grains, and a variety of other products. The present article describes the use of a mathematical model for the scale-up of lab-scale batch fluidization data to design an industrial-scale PFFBD. Axial dispersion theory was used in conjunction with the tanks-in-series model to describe the non-ideal flow. The model was implemented in Matlab 6.5 and it can be used for easily fluidizing particulate materials. The proposed model is capable of analyzing both the exponential falling rate and constant rate drying periods. The model predicts the required dryer dimensions for a given throughput and desired final moisture content. The model can also be used to study the effect of different process parameters such as solids feed rate, inlet air velocity, and temperature on the required dryer dimensions and it can also be used to predict the moisture and temperature profiles along the length of the PFFBD.  相似文献   

18.
This study deals with the influence of nanosized titanium dioxide (TiO2) catalysts on the decomposition kinetics of ammonium nitrate (AN) and ammonium nitrate‐based composite solid propellant. TiO2 nanocatalyst with an average particle size of 10 nm was synthesized by sol‐gel method using titanium alkoxide as precursor. Formation of nanostructured TiO2 and presence of its anatase and brookite phases was confirmed by powder X‐ray diffraction (PXRD) and selected area diffraction (SAED) studies. Nano TiO2 was further characterized by transmission electron microscopy (TEM), infrared (IR) spectroscopy, and thermogravimetry. The catalytic effect of TiO2 nanocatalysts on the solid state thermal decomposition reaction of AN and nonaluminized HTPB/AN propellant was evaluated. To ascertain the effectiveness of the TiO2 nanocatalyst, the thermal kinetic constants for the catalytic and non‐catalytic decomposition of AN and AN propellant samples were computed by using a nonlinear integral isoconversional method. Catalytic influence was evident from the lowering of activation energy for the catalyzed decomposition reactions. Apparently, the nanocatalysts provide Lewis acid and/or active metal sites, facilitating the removal of AN dissociation products NH3 and HNO3 and thereby enhance the rate of decomposition. The changes in the critical temperature of thermal explosion of AN and AN propellant samples due to the addition of TiO2 nanocatalyst were also computed and the possible reasons for the changes are discussed.  相似文献   

19.
A mathematical model for the drying of grain in a continuous vibrating fluidized bed dryer was developed. Simple equipment and material models were applied to describe the process. In the plug-flow equipment model, a thin layer of particles moving forward and well mixed in the direction of the gas flow was examined. Mass and heat transfer within a single wet particle was described by effective transport coefficients. Assuming constant effective mass transport coefficient and thermal conductivity, analytical solutions of the mass and energy balances were obtained. The variation in both transport coefficients along the dryer was taken into account by a stepwise application of the analytical solution in space intervals with averaged coefficients from previous locations in the dryer. Calculation results were in fairly good agreement with experimental data from the literature. However, the results depend strongly on relationships used to determine the heat and mass transfer coefficients; because the results from correlations found in the literature vary considerably, the correlations should be adapted to the specific equipment in order to obtain reliable results.  相似文献   

20.
An impinging stream dryer (ISD) belongs to a unique class of dryers that has proved to be an excellent alternative to flash dryers for removing surface moisture of particulate materials due to the collision of streams and particles in the dryer. However, the performance analysis of such devices, from a viewpoint of mathematical modeling, has not been investigated extensively. In this study, a mathematical model based on the direct simulation Monte Carlo (DSMC) method is proposed to describe the drying process of particulate materials in a coaxial ISD. The collisions between particles and the heat exchange between impacting particles are included in the present mathematical model. The predicted results were in good agreement with the experimental data, which indicates the validity of the present model. The drying process and the effects of various parameters, including the feeding mode and impinging distance, on the drying performance of the dryer were then numerically investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号