首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents experimental and simulated results of drying of peeled longan in a side-loading solar tunnel dryer. This new type of solar tunnel dryer consists of a flat-plate solar air heater and a drying unit with a provision for loading and unloading from windows at one side of the dryer. These are connected in series and covered with glass plates. A DC fan driven by a 15-W solar cell module supplies hot air in the drying system. To investigate the experimental performance, five full-scale experimental runs were conducted and 100 kg of peeled longan was dried in each experimental run. The drying air temperature varied from 32 to 76°C. The drying time in the solar tunnel dryer was 16 h to dry peeled longan from an initial moisture content of 84% (w.b.) to a final moisture content of 12% (w.b.), whereas it required 16 h of natural sun drying under similar conditions to reach a moisture content of 40% (w.b.). The quality of solar-dried product was also good in comparison to the high-quality product in markets in terms of color, taste, and flavor. A system of partial differential equations describing heat and moisture transfer during drying of peeled longan in this solar tunnel dryer was developed and this system of nonlinear partial differential equations was solved numerically by the finite difference method. The numerical solution was programmed in Compaq Visual FORTRAN version 6.5. The simulated results agreed well with the experimental data for solar drying. This model can be used to provide the design data and it is essential for optimal design of the dryer.  相似文献   

2.
《Drying Technology》2013,31(7):1357-1368
Abstract

A thin-layer forced air solar dryer was designed to study the feasibility of drying pistachio nuts. The dryer was tested during the 2001 and 2002 drying seasons. The maximum temperature in the solar collector reached 56°C, which was 20°C above the ambient temperature. The required drying time was 36 h. During the first day of drying (0800 to 1700 h) the moisture content dropped to about 21% (wb). The final moisture content of the dried nuts was 6% wb, which was 1% below the recommended storage moisture. The drying constant of the pistachio nuts during solar drying was determined using two mathematical models, a one-term series solution of Fick's diffusion equation and an exponential decaying model. There was no significant difference between the two models (α = 0.05). In general, the quality of solar dried nuts was better than the conventional heated air due to slower drying rates.  相似文献   

3.
Corn, rice, and wheat seeds with an initial moisture content (IMC) of 20–25% wb were dried to moisture content below 18% wb at 40–80°C in a fluidized bed dryer (FBD) and spouted bed dryer (SBD) and the seeds with IMC 18% wb were dried to below 14% wb at air temperatures 18–30°C and relative humidity 60–70% by an in-store dryer (ISD). As a result, it appears that a two-stage drying concept is feasible in drying high-moisture-content seeds due to the high germination rate of dried seeds. Nonetheless, the drying temperature must be carefully selected. A drying temperature of 40°C was clearly safe for all samples, whereas more than 90% of wheat seeds still germinated after drying at 60°C in FBD. Furthermore, drying seeds with IMC 18% wb by ISD was safe under specified drying conditions.  相似文献   

4.
Mint has been used as a medicinal and aromatic plant since ancient times. Its leaves are used for flavoring, spicing, and mint oil, which is used to treat several diseases. In order to preserve this seasonal plant for consumers during the year, it undergoes various technological treatments, such as drying. The economy of medicinal plant production is burdened considerably by the energy costs of drying. To substitute high-cost fossil energy, a hybrid photovoltaic-thermal (PVT) ultraviolet (UV)-stabilized polyethylene greenhouse dryer was developed to lower the initial costs. The drying process from an initial moisture content of 80% wb to a final moisture content of 11% wb takes 21 h. Testing was done for different samples of dried mint powder and comparison was made to fresh samples. The results show that nutritional and calorific values are retained along with a major degree of its original color, which, coupled with a significant reduction in moisture content, resulted in longer shelf life of the dried product. Further, the results show that the efficiency of the dryer and net CO2 mitigation over the lifetime was 34.2% and 140.97 tons, respectively. The carbon credit earned ranges from a minimum of $704.85 per ton of C to a maximum of $2,819.40 per ton of C.  相似文献   

5.
A two-dimensional finite element model has been developed to simulate moisture diffusion in longan fruit during drying and moisture diffusivities of the components of longan fruit determined experimentally are used in this simulation. Shrinkage of the flesh of longan during drying is also taken into account. The finite element model is programmed in Compaq Visual FORTRAN version 6.5. This finite element model satisfactorily predicts the moisture diffusion during drying. Moisture contents in the different components in the longan fruit during drying are simulated. Moisture content profiles of the longan fruit are also predicted. Knowledge gained from this study will be useful in the understanding of the transport processes in the different components of the longan fruit.  相似文献   

6.
Pneumatic conveying drying (PCD) is a combination of heat and mass transfer and pneumatic handling technology. This technology has been extensively used in chemical, pharmaceutical, and food industries, as well as many others. The PCD technique is beneficial for agricultural products, because it can achieve high-quality drying with reduced heat damage in a very short time. In this study, one-dimensional and three-dimensional mathematical models for the drying of sawdust particles in a pneumatic dryer were developed and verified with experiments. The three-dimensional modeling was done with a computational fluid dynamics (CFD) package (ANSYS FLUENT, Ver. 13.0, Ansys, Inc.), in which the gas phase is modeled as a continuum using the Euler approach, and the droplet/particle phase is modeled by a discrete phase model with a Lagrange approach. One-dimensional analysis was performed in MATLAB (Ver. 7.0). The experiments were carried out to validate the model in a pneumatic dryer with a horizontal length of 1 m, vertical height of 1.1 m, and diameter of 0.14 m. Sawdust, a raw material used for producing pellets, was prepared from well-seasoned pinewood timber. The initial moisture content of the sawdust was 22% (wb). The hot air inlet temperature in the dryer was fixed at 100°C. The variations in air pressure, air velocity, air temperature, and particle moisture content were investigated along the length of the dryer. The final moisture contents of sawdust and air temperature were reduced by 2% (wb) and 5°C, respectively. The simulated values were in good agreement with the experimental values. The developed model was then employed for the design of a pilot-scale pneumatic dryer (length 7 m and diameter 0.14 m). The final moisture content of the sawdust particles was reduced to 14% (wb) when the dryer length was increased from 1 to 7 m. In addition, the modeling was performed using buffers in the pilot-scale dryers. The use of a buffer noticeably increased the drying efficiency.  相似文献   

7.
Rotary dryers are commonly used in the modern large-scale tobacco drying industry that consumes huge amounts of energy. In fact, rotary dryers are commonly used in chemical industry in general. It is difficult to investigate the drying behavior at industrial scale. A “differential” laboratory rotary dryer was therefore designed and tested. The large diameter of the industrial dryer was preserved, but the width was a section of the industrial dryer. The drying characteristics of cut tobacco from top leaves and bottom leaves with initial moisture contents (22.5?±?1.0% on the wet basis) were studied in the “differential” dryer at air temperatures of 65, 85, 105, 125, and 145°C, respectively. The results show that increasing drying temperature accelerated the drying process, whereas the surface temperatures of the cut tobacco samples stayed in the temperature range of 48–71°C when their moisture contents were reduced to 12.0?±?1.0% (wb). This 12.0% (wb) was required by commercial operations. Uniquely, the drying kinetics was captured using the reaction engineering approach (REA). Although different settings were applied, the model can be used to describe all the data well. The unique relationship between the normalized activation energy and the moisture content is approximated which is independent of the drying air temperature and the tobacco origin. The different drying behaviors for the cut tobacco from top leaves and bottom leaves can be attributed to their different equilibrium isotherms. Through controlling the drying time as predicted by REA model, the outlet moisture contents of cut tobacco from top leaves dried at 95°C/RH0.034/320?s and 115°C/RH0.017/250?s were shown to be 12.3 and 11.8% (wb), with the relative deviations of 2.5 and 1.7%, respectively, and these were within the industrial permissible range.  相似文献   

8.
The dryer is required for drying of grain as well as drying of the processed products in small catchment agro processing centers in the developing world. However, due to varied material characteristics of grain and secondary processed product, two entirely different types of dryers are required. The grain is dried in a recirculatory dryer, whereas processed product is dried in a tray dryer, where it is frequently mixed and trays are also intermittently changed. To avoid the need for two dryers, a novel design of a low-cost hot air dryer was developed where just by changing the trays the dryer can be converted from an LSU grain dryer to a tray-type product dryer. The dryer was tested for drying soybean grain as well as processed soy products like blanched soybean dal and soyflakes. The capacity of the dryer was 100 kg/batch in a tray dryer with each tray accommodating 10 kg of wet material. In case of LSU mode, the capacity of the dryer was 250 kg of grain per batch. The drying time required was 5 h for 250 kg of wet soybean from 24 to 10% moisture content, whereas in a tray dryer 100 kg blanched soybean dal was dried from 60 to 10% in 5 h and 100 kg of soyflakes from 25% moisture content to 10% moisture in 1.75 h. The cost of the dryer is estimated at US$580.00 and it can be fabricated in a moderately equipped workshop in developing countries.  相似文献   

9.
Performance and energy efficiency of two types of dryers for fish feed are compared. The first dryer was a belt dryer located at a fish feed production facility in Norway. The second dryer was a counterflow multideck dryer at a fish feed production facility in Chile. In both dryers there was only a slight decrease in drying rate over the dryer. Product samples showed a standard deviation of 0.45% on an average moisture content of 10.2% (wb) for the belt dryer and 0.49% on an average of 8.6% (wb) for the counterflow dryer. Mass and heat balances showed good accuracy. In order to compare the energy use of both dryers, normalized energy consumption and efficiency were calculated for equal feed and air inlet temperatures using two methods: the primary energy method and the energy difference method. The average normalized specific energy consumption for the belt dryer was 3,386 kJ/kg water evaporation (primary energy method) and 2,970 kJ/kg (energy difference method), with efficiencies of 56 and 64%, respectively. For the counterflow dryer the average specific energy consumption was 2,893 kJ/kg (primary energy method) and 2,393 kJ/kg (energy difference method), with efficiencies of 70 and 85%, respectively.  相似文献   

10.
The novel low-cost band thermodynamic dryer equipped with a solar collector, a parabolic focusing collector, a heat exchanger, screw fan, and a drying cabinet with a band was designed and tested. The maximum temperature in the solar collector reached 85°C, which was 55°C above the ambient temperature. The required drying time was 4.5 h, much reduced from the traditional solar drying time of 48 h. The final moisture content of the Roselle calyx was 12% w.b., which is the recommended storage moisture content. Measurements of ambient temperature and humidity, air temperature, and relative humidity inside the dryer as well as solids moisture loss-in-weight data are employed as a means to study the performance of the dryer. Solar drying was compared with conventional sun drying and heated air drying, using the following evaluation criteria: drying time, dried Roselle color, texture, taste, and production cost. For evaluation, a model-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology was used. After the evaluation, the proposed continuous solar dryer was found to be better than conventional drying and heated air drying due to slower drying rate and better quality of the dried Roselle.  相似文献   

11.
A lab model vacuum-assisted solar dryer was developed to study the drying kinetics of tomato slices (4, 6, and 8 mm thicknesses) compared with open sun drying under the weather conditions of Montreal, Canada. The drying study showed that the time taken for drying of tomato slices of 4, 6, and 8 mm thicknesses from the initial moisture content of 94.0% to the final moisture content of around 11.5 ± 0.5% (w.b.) was 360, 480, and 600 min in vacuum-assisted solar dryer and 450, 600, and 750 min in open sun drying, respectively. During drying, it was observed that the temperature inside the vacuum chamber was increased to 48°C when the maximum ambient temperature was only 30°C. The quality of tomato slices dried under vacuum-assisted solar dryer was of superior quality in terms of color retention and rehydration ratio. The drying kinetics using thin-layer drying models and the influence of weather parameters such as ambient air temperature, relative humidity, solar insolation, and wind velocity on drying of tomato slices were evaluated.  相似文献   

12.
《Drying Technology》2013,31(8):1673-1689
ABSTRACT

The performance and operating characteristics of a low temperature re-circulating cabinet dryer using a dehumidifier loop were studied using alfalfa. Chopped alfalfa, initially at 70% moisture content, was dried to 10% moisture content in the dryer. Two dryer setups were used. The dryers in each case had a partitioned cabinet with trays of material on one side and a stack of one or two small household dehumidifiers on the other side. Air was re-circulated through the material from bottom to the top and back through the dehumidifiers. Two drying configurations were tested. In one, the material was left on the trays until drying was complete (batch or fixed tray drying). In the other configuration, the trays were moved from top to bottom, introducing a new tray at the top while removing an old tray from bottom. Drying air temperature ranged from 25 to 45°C. The average air velocity through the material was 0.38 m/s. Alfalfa chops dried in 5 h in the fixed tray drying and in 4 h in the moving tray drying. The specific moisture extraction rate ranged from 0.35 to 1.02 kg/kWh for batch drying and stayed at an average value of 0.50 kg/kWh for continuous/moving tray drying.  相似文献   

13.
İlhan Ceylan 《Drying Technology》2013,31(12):1469-1476
In this research, poplar and pine timbers have been dried in heat pump dryer functioning on the basis of 24-h operation. The change in weight in all of the timbers was followed in the drying chamber and drying stopped when the desired weight was achieved. Initial moisture content of the poplar timbers was 1.28 kg water/kg dry matter, and the moisture content was reduced to 0.15 kg water/kg dry matter moisture content in 70 h; the moisture content of the pine timbers, which was 0.60 kg water/kg dry matter, was reduced to the same amount in 50 h. Drying air temperature, relative humidity, and stack weight were measured and collected during drying and saved on a computer and analyzed afterwards. The moisture ratios were analyzed with Statgraphic computer program by using semitheoretical models and empirical values. Correlation and standard error of estimation (SEE) and R 2 values were achieved.  相似文献   

14.
《Drying Technology》2013,31(3):637-649
ABSTRACT

Echinacea angustifolia or the purple coneflower is an important medicinal plant that boosts the immune system. It is believed that the active ingredients are predominantly located in the root. Physical characteristics and drying rates of the root of E. angustifolia from a farm in Saskatchewan, Canada were studied. Root consisted of a main (central) root and secondary root branches. Cleaned roots exhibited wide variations in mass ranging from 15 to 95 g. The central root diameter varied from 9 to 20 mm with an average of 14 mm. The average initial moisture content of the fresh root was 57% (wb). The specific densities of the fresh and completely dried root were 1040 and 1370 kg/m3, respectively; and the corresponding bulk densities of loosely piled roots were 305 and 410 kg/m3. Roots were dried in a convection oven at temperatures of 23, 30, 40, 50, 60 and 70°C. Equations for estimating drying rates, drying constants, and equilibrium moisture content were developed. Increased drying temperatures reduced echinacosides but did not affect alkamides 1 and 2 which are known to be also responsible for medicinal value of E. Angustifolia.  相似文献   

15.
ABSTRACT

In the present study drying of fine crystalline solid was carried out in a non-insulated jacketed screw conveyor dryer SCD of 3 m length and 0.072 m screw diameter. It is nitrogen-swept to carry off the evaporated moisture. Dryer performance was evaluated in terms of the final moisture content, heat-transfer coefficient, thermal efficiency and power consumption. From the experimental results it was observed that drying under low pressure gives 92% moisture removal compared to 30–40% using low flow rates of nitrogen. The initial moisture content was in the range of 5 to 6%. Over the parameter range studied, the overall heat transfer coefficient was found to be in the range of 46–102 W/m2K. The average rise in the temperature of the product was 40 to 50°C. Thermal efficiency (based on sensible and latent heat) of the dryer obtained was found to be in the range of 25–62%, typical values obtained in falling rate drying period. Power consumption per metric ton of dried material was found to be a strong function of screw speed and material feed rate, material properties, and drive efficiency.  相似文献   

16.
Distillers' spent grain pellets were prepared from material with an initial moisture content of 25% (wb). These pellets were dried in pairs using superheated steam at 120°C in two orientations, horizontal and vertical. The drying characteristics, modeled by the Page equation, showed that there was a significant difference between orientations. The overall moisture diffusivity was calculated using a finite cylinder model based on Fick's law of diffusion accounting for a change in dimensions over the course of drying. The overall diffusivity values ranged from 4.08 × 10?10 to 1.48 × 10?8 m2/s.  相似文献   

17.
M. Hemis 《Drying Technology》2014,32(5):543-549
The heat and mass transfer that occurred during drying of soybeans by a combined process using microwave (MW) and convective hot air was studied. A coupled mathematical model was developed to simulate this phenomenon. The soybean samples were re-wetted to 20% wet basis, the selected level of initial moisture content (IMC), and then dried in a domestic microwave oven under various MW power levels from 300 to 390 W, using inlet air with relative humidity of 35, 55, 75, and 95%. The simulated moisture loss profiles obtained from the coupled model compared well with those obtained in the experiments. Results showed that the drying rate decreased from 6.235 × 10?5 to 6.192 × 10?5 kg water/(kg wb s) as the inlet air temperature increased from 30 to 60°C. Furthermore, the drying rate was observed to increase from 6.192 × 10?5 to 6.211 × 10?5 kg water/(kg wb s) as the relative humidity (RH) increased from 35 to 95%.  相似文献   

18.
Tomato peel was separated from pomace by sedimentation and dried in cabinet and fluidized-bed dryer at 50–70°C using 4–12 kg/m2tray load. The drying of tomato peel took place under the falling rate period and the drying behavior was well described by Page's model with coefficient of determination greater than 0.99 and standard error of 0.003–0.016. A fluidized-bed dryer was much more efficient than a cabinet dryer to dry tomato peel. The moisture adsorption isotherms of tomato peel were obtained by equilibrating above saturated salt solutions of known a w (0.113–0.92) at 20–60°C. The data were analyzed using fifteen sorption models based on coefficient of determination, standard error, and residual plots. Modified Henderson was the best model for tomato peel with coefficient of determination >0.99, standard error <0.210, and a scattered residual plot. The net isostearic heat of sorption, estimated using the Clausius-Clapeyron equation, was 0.74–23.23 kJ/mol at 2.0–2.5% moisture content (dry basis).  相似文献   

19.
Energy consumption and rice quality are the main concerns of millers and must be assessed to ascertain suitable industrial drying strategy. In this article, industrial paddy drying methods as usually practiced in the BERNAS paddy drying complexes of Malaysia have been evaluated. The analysis showed that the specific electrical and thermal energy consumption varied between 16.19 kWh to 22.07 kWh and 787.22 MJ to 1015.32 MJ, respectively, in single-stage paddy drying (SSPD) using an inclined bed dryer (IBD) to dry each tonne of freshly harvested paddy with average moisture content of 23.35 ± 0.86% wb. On the other hand, the energy consumptions for two-stage paddy drying (TSPD) with a fluidized bed dryer (FBD) followed by IBD were 21.37 kWh/t to 30.69 kWh/t and 666.81 MJ/t to 1083.42 MJ/t, respectively. SSPD at 35–39°C and TSPD using FBD at 120°C as the first stage, followed by IBD as the second stage at lower temperature of 35–39°C yielded 2–3.6% higher head rice yield than paddy-dried by a single stage with IBD using comparatively higher temperature of 40–44°C. Therefore, IBD is recommended to be operated using a temperature of 35–39°C both in single-stage drying and second-stage drying of paddy after fluidized bed drying to obtain quality rice.  相似文献   

20.
Okara pellets were dried in a pneumatic tube from 78% of moisture content (w.b.) to 64% and then in a rotational drum to 3%. Time, temperature, and drum rotation were correlated to the okara darkening. The temperatures used were 130, 150, and 170°C in the pneumatic tube and 50, 60, and 70°C in the rotational dryer. The rotations used for the drum were 27 and 47 rpm. When okara was dried only in the pneumatic tube it became dark; however, when dried in both the tube and the dryer the darkening level decreased significantly. The results showed that the first drying level temperature does not influence the drying time of the combined process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号