首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugar cane fibers and arrangements of fibers in cylindrical bundles were dried in a thermoanalyzer and their diffusive coefficients were calculated using the slope method. The effect of temperature, moisture content as well as structural changes were analyzed. Diffusion coefficients changed nanlineariy with moisture content and followed an Arrhenius-like functionality with temperature. The analysis of these effects suggested a liquid diffusion transport mechanism of moisture transfer inside sugar cane fibers and bundles.  相似文献   

2.
Abstract

Using Luikov's heat and mass transfer equations and a finite element formulation, the drying process of an anisotropic biological product (sweet potato) was investigated. The model was used to determine the coefficients of heat and mass transfer, the mass diffusivity normal and parallel to the fibers of sweet potato samples. These parameters were estimated by minimizing the deviation of experimental data and numerical predictions.

Laboratory experiments with three different configurations were conducted to measure the temperature and moisture content of sweet potato samples during drying. Numerical simulation showed good agreement with the measured values.  相似文献   

3.
ABSTRACT

Rough rice at about 21% (wet basis) was dried at various conditions of temperatures and evaporating capacities of air. The influence of both parameters on drying rate has been studied. At high temperatures, high drying rates can be achieved with low evaporating capacities. In addition, desorption isotherms of rough rice were measured at 35, 60 and 85°C and the experimental isotherms data were fitted using a modified Pfost equation.

A compartmental model was developed to simulate the grain moisture content. Heat and mass transfer coefficients were optimized using a Nelder & Mead method. Internal mass transfer coefficient was written as an exponential function of the average moisture content and temperature of the grain and the external mass transfer coefficient as a function of air temperature. The compartmental approach predicts very well the average moisture content with a mean error of about 5% in static and dynamic conditions.  相似文献   

4.
ABSTRACT

The computer tomography(CT image of wood was analyzed to estimate the moisture content from CT number. Comparing moisture contents, densities and CT numbers, moisture distributions were nondestructively determined by CT numbers detected with the scanner.

By periodically measuring CT images of the same cross section of specimens in drying, change of moisture distribution was computed. The coefficients of moisture movement at given positions inside the specimen were directly calculated from Fick's Law with known values of moisture content change, distance and drying time.

The diffiion coeficient was described as a function of various driving forces of moisture content, partial vapor pressure and chemical potential of moisture in wood. The results were comparable to data in the literature. Furthermore, it is shown that diffusion coefficients based on moisture content varies as a curve with the maximum value at about 15% m.c. during drying, and that the moisture content is actually adaptable to the driving force for moisture movement in wood because of capability over wide moisture content range.  相似文献   

5.
ABSTRACT

The solution of classical diffusion equation based on the assumption of average moisture diffusion coefficient did not adequately represent natural convection drying of rough rice in thin vertical columns exposed on both sides to hot air. Instantaneous moisture diffusivity coefficients determined from experimental drying curves decreased continuously with an increase in exposure duration and were linearly related to moisture ratio. The proponionality constant which was called apparent moisture diffusion coefficient was distinctly related to air temperature, relative humidity, and initial moisture content of rough rice. The modified moisture diffusion model using the instantaneous moisture diffusion coefficient was found to best represent the moisture removal from bulk rough rice.  相似文献   

6.
《Drying Technology》2013,31(2):507-525
ABSTRACT

In this study, the drying properties of rubber wood, which are the basic parameters for kiln scheduling design, were determined from desorption experiment. Equilibrium moisture content expression was developed. The diffusion coefficients at different drying environments were evaluated. It is more appropriate to determine the diffusion coefficients by the optimum scheme in comparison to other schemes; the logarithmic, square-root and half-fraction of evaporable moisture schemes. Finally, the diffusion coefficient of rubber wood was described by, instead of wood moisture content, the drying temperature and relative humidity, which are the parameters controlling the drying kiln operation.  相似文献   

7.
Abstract

Flax fibers with different moisture content were used as reinforcement in polypropylene matrix with maleic anhydride grafted polypropylene coupling agent. Mechanical properties-three point bending and Izod impact strength-were investigated as a function of moisture content of the fiber, and amount of applied coupling agent.

By decreasing the moisture content of the fiber all the investigated properties can be improved. Using PPgMA as coupling agent the three point bending characteristics (flexural strength, flexural modulus, and ultimate bending stress) were better, while the impact strength decreased.  相似文献   

8.
ABSTRACT

This paper describes techniques that have been developed for accurately measuring the surface temperature of drying lumber using a radiation thermometer, and interior temperatures at various depths using 30 gauge thermocouples. Methods for calculating heat transfer coefficients during the drying of lumber are also described. Experimental results, showing surface and interior temperatures, and moisture content, as functions of drying time are presented.  相似文献   

9.
Abstract

Equilibrium moisture content isotherms for Spanish hazelnut (Corylus avellana L.) at different temperatures (30°C-80°C) were determined using static gravimetric method. Thin layer drying experiments were done with forced air circulation and were conducted with different operating conditions to determine the drying characteristics of hazelnuts. The effect of air temperature (30°C-70°C), air velocity (0.5 m/s - 2 m/s) and drying bed loading density (50 kg/m2 - 150 kg/m2) on drying of unshelled and shelled hazelnuts was studied. Six mathematical models were used to fit the experimental equilibrium moisture content data, from which the G.A.B. model was found to give the best fit. Diffusion coefficients were determined by fitting experimental thin-layer drying curves to the Fick's diffusion model. Variation of the effective diffusion coefficient with temperature was of the Arrhenius type. The Page equation was found to describe adequately the thin layer drying of hazelnut. Page equation drying parameters k and n were correlated with air temperature and relative humidity.  相似文献   

10.
N. Kechaou  M. Maâlej 《Drying Technology》2013,31(4-5):1109-1125
ABSTRACT

Experimental drying curves for Tunisia Deglet Nour dates were obtained in a laboratory dryer under different drying conditions The air temperature was varied from 30 to 69°C, relative humidity from 11.6 to 47.1 % and air velocity from 0.9 to 2.7 m/s. A numerical method to obtain a solution of a diffusion equation in which the diffusivity depends upon temperature and moisture content has been proposed to investigate the moisture movement in a date by assuming the sample to be a homogenous infinite cylinder. To rind the fitting moisture and temperature dependent diffusivity, the calculated drying curves are compared with the observed drying curves and an empirical equation for the moisture diffusivity of the date has presented as a function of temperature and moisture. It has been shown that the moisture distribution in the date during drying can be obtained by using the empirical equation presented.  相似文献   

11.
ABSTRACT

This paper explores the influence of temperature and pressure on drying kinetics of 2-(3-benzoylphenil propionic acid) ketoprofen, in a vacuum dryer on laboratory scale, Experimentally determined relations between moisture content and drying rate vs time, were approximated with an exponential model. Model parameters were correlated with drying conditions (temperature, pressure) and defined by functions of their potentions.

From an energy balance of the process, a mathematical model for simulating dependence of sample temperature vs drying time, and moisture content of material, has been developed.

Simulation of the drying kinetics and sample temperature, by use of those functional dependencies shows good agreement with experimental results.  相似文献   

12.
Abstract

The deep bed drying modelling of hazelnut (Corylus avellana L.) have been studied by considering the deep bed as a series of thin layers. A partial differential equations model has been developed to simulate heat and mass transfer in fixed deep bed hazelnut dryers. The computer program developed permits the calculation of temperature and moisture content profiles along the dryer. As a process of validation of the model, the predicted and experimental results of average moisture content of the whole bed were compared. It has been observed that the simulation results agreed quite well with experimental data.  相似文献   

13.
ABSTRACT

Simultaneous heat and mass transfer equations were developed to simulate the infrared radiative heating of agricultural crops. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the kernel. Energy for moisture evaporation is supplied by the infrared radiant energy. The equations were validated with experimental data on surface temperature and average moisture content of barley kernels. Average deviations of predicted surface kernel temperature and average kernel moisture from experimental data were 3.9°C and 0.6%(w.b.), respectively. These comparisons were performed using kernels having initial moisture contents of 12.2%, 17.C% and 23.17%.

Sensitivity analysis of process parameters showed that infrared burner temperature, distance of infrared burner from the grain bed, grain initial moisture content and grain heating time significantly affected kernel temperature. Burner temperature and burner height had no significant effect on grain final moisture content.  相似文献   

14.
ABSTRACT

The drying of paper under impinging jets of superheated steam and air during the falling rate period was investigated in the range of jet temperatures 150 < Tj < 450oC and basis weights 30 < B < 150 g/m2. The equilibrium moisture content of Kraft and TMP paper was measured. The adsorption energy of water on pulp fibers near the boiling point appears lower than the value extrapolated from Prahl s (1968) measurements made in air at lower temperatures. The critical moisture content was determined for superheated steam and air impingement drying. Complete drying rate - moisture content histories are presented for a series of typical conditions.  相似文献   

15.
ABSTRACT

Closed-form solutions of the non-steady state diffusion equation with constant transport coefficients are presented. The diffusion coefficient is assumed to be finite, but the surface emission coefficient can be either finite or infinite. Mathematical conditions are established for the transport coefficients to be constant. When these conditions are met, the transport coefficients can then be easily evaluated. Diffusion test data can be compared against these conditions to determine whether or not the transport coefficients are constant. Desorption test data of northern red oak indicate that initial moisture content in wood and equilibrium moisture content in the environment are closely related to the constancy of the transport coefficients.  相似文献   

16.
The dielectric properties of petroleum coke at five temperatures between 20 to 100 ° C, covering different moisture content levels at 2.45 GHz, were measured using an open-ended coaxial probe dielectric measurement system. The effects of drying temperature, duration of drying, and sample mass on the moisture content and dehydration rate of petroleum coke was assessed utilizing the response surface methodology. The dielectric constant, loss factor, and loss tangent were all found to increase nearly linearly with increase in moisture content. Three predictive empirical models were developed to relate the dielectric constant, loss factor, and loss tangent of petroleum coke as a linear function of moisture content from 3–10%. An increase in temperature between 20 to 100 ° C was found to increase the dielectric properties. The penetration depth was observed to increase linearly with decrease in moisture content in the range of 3 to 10%. A predictive empirical model was developed to calculate penetration depth for petroleum coke. Two mathematical models were established and analyzed using RSM to describe the relationship between the microwave drying conditions and the responses, moisture content, and dehydration rate. Statistical analysis with response surface regression showed that microwave drying temperature, duration of drying, and sample mass were significantly related to moisture content and dehydration rate. Based on the RSM analysis, the optimum process conditions were estimated to be a microwave drying temperature of 75 ° C, drying duration of 10 sec, and sample mass of 60 g, with the resultant moisture content being 0.34 at a dehydration rate of 2.94 g/min.  相似文献   

17.
ABSTRACT

The effect of initial water activity (aw) of mango slices obtained by osmotic concentration pre-treatments with sucrose syrups on their air-drying behavior at 50, 60 and 70°C were evaluated calculating the apparent diffusion coefficients with second Fick's law. The increase in sucrose concentration or reduction in ew of mango slices affects the moisture transport during the air drying step. The diffusion coefficients decrease with the increasing in solid content during the osmosis and increase with the drying temperature. The time needed to reach a final moisture content of 0.7 g water/g ds was 50 to 75% lower in osmosed mangoes than those obtained for fresh mango.  相似文献   

18.
ABSTRACT

The concentration dependency of diffusion coefficients of hygroscopic materials can usually only be calculated by cumbersome experimental techniques.

Taking the diffusion rate in the fictious steady state with the same mean moisture concentration as in the regular regime of the drying process of a spherical hygroscopic particle (which means the drying period not influenced by initial moisture distributions) into account, a simple method is proposed to estimate the dependency of diffusion coefficients on the moisture concentration for hygroscopic materials from drying rate curves of the single particle.  相似文献   

19.
ABSTRACT

Anchovy fish meal with an approximate uniform moisture content of 10% was used for this study. Vapor adsorption isotherms were determined at 25 ° C, 35 ° C and 45 ° C. The differential and integral thermodynamic properties were estimated using the Othmer method. The isosteric heat or differential enthalpy, as a function of moisture content, showed a maximum value around 4.5 g of water/100 g d. s. The heat of sorption increased gradually with an increase in sorbed water until reaching its maximum value near the monolayer, and at a given moisture content, decreasing with temperature. The molar entropy values obtained were high at low water contents and fell to a minimum near the monolayer value.  相似文献   

20.
Abstract

The dynamic behavior of conveyor-belt dryers involving externally controlled heat and mass transfer phenomena has been studied via digital simulation. The investigation concerned an industrial dryer used for the moisture removal from wet raisins. The dryer consisted of three drying chambers and a cooling section, all involving the same conveyor belt. For each chamber, perfect temperature control was assumed for the drying air temperature, while its humidity was left uncontrolled. The effect of material temperature and moisture content at the entrance of the dryer and the drying air temperature on material temperature and moisture content at the exit of the dryer and the corresponding drying air humidity, have been explored by step forcing the disturbance and manipulated variables in the non-linear dryer model simulator. Results showed that material moisture content at the exit of the dryer is greatly affected by material moisture content at the entrance as well as by the drying air temperature. Reliable transfer functions for each process module were obtained by fitting several transfer function models on the simulated data using a least-squares approach. It was found that when input material moisture content could be instantly measured, the system responded slowly enough so that excellent control could be achieved for material moisture content at the exit of each chamber. In this case a Pi-feedback cascade temperature controller was used. When a 15 sec delay measuring sensor was introduced, poor performance was observed. A simplified lead-lag feedforward controller, added to the system, in conjunction with the primary Pi-feedback cascade controller, resulted in good control performance of the delay sensor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号