首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During combined microwave–hot-air drying, the surface and the core temperatures of the sample have great influence on the process. To investigate the influence systematically, drying system with feedback control strategy of the two temperatures was proposed. Then various pairs of the two temperatures were applied in the drying mode 1. However, it was found difficulty to achieve both short drying time and high product quality with fixed temperature pair, because the interaction between microwave and the sample changes as the moisture content decreases in the drying process. Different temperature pairs were applied during the three drying stages in drying mode 2, so that better product can be obtained in shorter drying time. To further improve the product quality, the drying rate was controlled by a feedback loop within a desired range in drying mode 3. The change of drying rate was realized by adjusting the two temperatures continuously. To omit the weighing scale, a feedforward control strategy for the drying rate was put forward in drying mode 4, where the temperatures were controlled along with preset lines. The results showed that the product quality and the drying time were similar to those in drying mode 3.  相似文献   

2.
Drying process of industrial green in-process products especially those susceptible to cracking, need great care, and optimally arrangement of parameters of convective drying. Intermittent drying is a new technique in drying area and is a promising solution for product quality enhancement. The intermittent drying with variable air temperature and the intermittent drying with variable air humidity are the most used techniques. The current study is devoted to 3D modeling and simulation of intermittent drying with variations of both air humidity and temperature and it is then compared with each of the cases of the intermittent drying with variable air temperature and the intermittent drying with variable air humidity. It was observed that the best dried product quality was obtained in intermittent drying with periodic changes of air temperature. Vapor condensation in the intermittent drying with variable air humidity is an undesirable phenomenon that significantly reduces the effectiveness of this process.  相似文献   

3.
《Ceramics International》2021,47(19):27334-27341
The sinterability of 3Y-TZP/TiO2 materials using micrometre-sized ZrO2 and nanometre-sized TiO2 (16 wt%) by one-step fast microwave sintering at low temperature (1200–1300 °C) was investigated. Firstly, in situ detailed analysis of the dielectric properties of the material with temperature was carried out in order to measure the capacity of the material to transform microwave energy into heat. Another related parameter associated to microwave sintering is the penetration depth of the microwave radiation into the material, which showed great homogeneity from 400 °C. Secondly, the effect of sintering conditions on microstructure, density, hardness and coefficient of thermal expansion was evaluated. The X-ray diffraction study and microstructural characterization demonstrate that it is possible to obtain fully dense pieces (>99%) by microwave sintering, a condition yielding to a coarse-grained (~1–2 μm), quite hard (~13.7 GPa) 3Y-TZP/TiO2 material. However, the most important feature is the significant reduction of the thermal expansion coefficient (8·10−6 K−1) as compared to that of 3Y-TZP. In addition, the results from conventional sintering at 1400–1500 °C with 2 and 6 h of dwell time are examined and compared. The materials obtained at 1500 °C showed high density with grain size and hardness similar to those obtained by microwave but with a dramatic difference in the power consumption of the sintering cycle, since the materials obtained by microwave used a maximum absorbed power of 120 W and a heating cycle of only 40 min.  相似文献   

4.
This study aims to investigate the effect of ultrasonic pretreatment on drying time and quality properties of tomato slices dried by microwave combined with hot air at 60°C. The influence of ultrasound pretreatment (0, 20, and 40?min) and microwave power (120, 150, and 180?W) on drying time, color, total phenolic content, lycopene, vitamin C, and rehydration capacity of dried slices of tomato was studied. Results showed that as the microwave power level increased, drying time decreased significantly (about 46.4%). Ultrasound pretreatment decreased the drying time by 7.38% only at 120?W microwave power and 40?min of pretreatment compared to those without ultrasound pretreatment at the same microwave power. Depending on drying conditions, vitamin C and lycopene contents reduced from 433.94 to 81.89?mg AA/100?g dry solids and 3920.57 to 415.40?mg/100?g dry solids, respectively. The change in total phenolic content was not severe as much as vitamin C contents. Rehydration capacity of pretreated samples was larger than nontreated samples. The color values of dried tomato slices were in the acceptable range. Both microwave power and ultrasound pretreatment affected the quality of the final product significantly.  相似文献   

5.
6.
S. Deepika 《Drying Technology》2018,36(14):1719-1737
The different pretreatments were given to lemon slices to inactivate pectinesterase and peroxidase enzymes and to dry the product rapidly using infrared–microwave hot air combination. Osmotic pretreatment followed by 1-min steam blanching was found to reduce moisture in the product, increase solid content, and inactivate enzymes in lemon slices while maintaining negligible dry matter and juice sac loss. The infrared hot air was found effective in partial drying of pretreated lemon slices up to 1 hour without entering in drastic falling-rate period. Therefore, after 1?h microwave hot air was used to complete the drying process. The optimum infrared drying condition was found at 3000?W/m2 radiation intensity, 90°C air temperature, 100?mm distance between lamp and product, and 1.5?m?s?1 air velocity. In microwave finish drying, the power density of 0.30?W?g?1, 89.9°C air temperature, and 0.5?m?s?1 air velocity were found to result in the best product. The hybridization of osmotic–steam blanching and the two drying methods overcame the problems of browning, extended falling-rate periods, improper power distribution, and quality deterioration. Also, the higher values of moisture diffusivities were observed during hybrid drying.  相似文献   

7.
Mesoporous copper–cerium–oxygen hybrid nanostructures were prepared by one-pot cetyltrimethylammonium bromide surfactant-assisted method, and were characterized by thermogravimetry, X-ray diffraction, transmission electron microscopy, nitrogen adsorption–desorption, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Low temperature carbon monoxide oxidation was used as probe reaction to investigate the application of the prepared mesoporous copper–cerium–oxygen hybrid nanostructures in catalysis. The product calcined at 400 °C, with disordered wormlike mesoporous structure, high specific surface area (SSA) of 117.4 m2/g and small catalyst particle size of 8.3 nm, shows high catalytic activity with the 100 % CO conversion at 110 °C, indicating its potential application in catalysis. Catalytic activity results from the samples calcinied at different temperature suggested that high SSA, small catalyst particle size, finely dispersed CuO species and synergistic effect between CuO and CeO2 were responsible for the high catalytic activity of the catalysts.  相似文献   

8.
This article reports the investigation of the drying uniformity of a new drying technique called pulse-spouted microwave–freeze drying. A computer vision technique and mathematical statistics were used to evaluate the drying uniformity. The results show that low microwave power results in prolonged drying time (the drying time of 1 W/g was 6 h, which was longer than that for 2 and 3 W/g), whereas spouting time and the time interval show less influence on the drying time. Analysis from infrared camera photos reveals that lower microwave power, longer spouting interval, and longer spouting time could improve the temperature distribution. Sample 4 (power: 2 W/g, time: 3 s, interval: 300 s) had the best temperature distribution uniformity.  相似文献   

9.
《Ceramics International》2017,43(18):16167-16173
In this work, a series of low-temperature-firing (1−x)Mg2SiO4xLi2TiO3–8 wt% LiF (x = 35–85 wt%) microwave dielectric ceramics was prepared through conventional solid state reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that the Li2TiO3 phase was transformed into cubic phase LiTiO2 phase and secondary phase Li2TiSiO5. Partial substitution of Mg2+ ions for Ti3+ ions or Li+Ti3+ ions increased the cell volume of the LiTiO2 phase. The dense microstructures were obtained in low Li2TiO3 content (x ≤ 65 wt%) samples sintered at 900 °C, whereas the small quantity of pores presented in high Li2TiO3 content (x ≥ 75 wt%) samples sintered at 900 °C and low Li2TiO3 content (x = 45 wt%) sintered at 850 and 950 °C. Samples at x = 45 wt% under sintering at 900 °C for 4 h showed excellent microwave dielectric properties of εr = 10.7, high Q × f = 237,400 GHz and near-zero τf = − 3.0 ppm/°C. The ceramic also exhibited excellent chemical compatibility with Ag. Thus, the fabricated material could be a possible candidate for low temperature co-fired ceramic (LTCC) applications.  相似文献   

10.
A process for the SAS coprecipitation of ibuprofen with the polymers poly(l-lactic acid) and Eudragit L100 was successfully carried out. The particle size was reduced to micrometer and near nanometer ranges. The morphology of the raw material changed to spherical upon processing for both poly(l-lactic acid)/ibuprofen particles and eudragit/ibuprofen particles. The eudragit-based particles were significantly smaller than those obtained with poly(l-lactic acid). Ibuprofen release profiles were determined for simulated gastric and intestinal fluids in order to study the effect of the polymer and to identify the appropriate systems for different administration routes. The in vitro release profiles for both polymer/drug systems showed a slower and more controlled release in comparison to the unprocessed ibuprofen. Moreover, the effects of pressure, temperature, initial concentration of the solution and drug-to-polymer ratio on the particle size and morphology of these drug/polymer systems have been evaluated. According to the XRD, DSC and FTIR data, physicochemical interactions do not occur between ibuprofen and the polymers and a proportion of the ibuprofen molecules probably remained on the microparticle surface.  相似文献   

11.
Ultrafine powders of ZrO2–Y2O3 solid solutions have been synthesized by hydrothermal treatment at 110°C. Zirconia gel, crystalline Y2O3 and various mineralizing solutions have been utilized as precursors for the hydrothermal synthesis. Yttria-stabilized zirconia (YSZ) with different Y2O3 content and characterized by different crystallite sizes have been produced by changing the hydrothermal treatment temperature, and the nature and concentration of the mineralizer solution. The role of mineralizer solutions on the crystallization-stabilization of zirconia gel at low temperature of hydrothermal treatment is discussed.  相似文献   

12.
In the present work nano-sized powder of β-SiAlON was produced using a wet milling process. Different milling times and mediums (methyl ethyl keton, ethanol and toluene as solvents, polyethyleneglicol, oleic acid, sodium tripolyphosphate and polyvinylpyrrolidon as dispersants) were performed for the determination of the most efficient milling system. The powders were produced using a conventional process (the ball to powder ratio was 1:1.5, at 300 rpm, for 1.5 h) having a few hundred nanometer particle size, and these were used as standard powders in this study. The nano-sized β-SiAlON starting powders (<100 nm) were sintered at lower temperatures than that of the conventional powders. The amount of Y2O3 in powders (~130 nm), produced by high energy milling process, was fewer than conventional powders (5 wt.%). The results of the powder size, sintering behavior and mechanical properties of this sample were compared to those of the standard powder and its sintered sample. This sample, produced using the nano-powder, was investigated, and densified at 150 °C lower than that of the standard sample. Even though the amount of Y2O3 was decreased, the hardness of the samples was better than that of the standard sample.  相似文献   

13.
《Ceramics International》2023,49(13):21652-21657
Today, many industrial applications require components that work under extreme conditions, especially at very high temperatures (>1200 °C) for a long time. An excellent combination of properties such as low thermal conductivity, low coefficient of thermal expansion and high chemical resistance are required for such applications. Advanced ceramic materials based on zircon-zirconia composites (ZrSiO4–ZrO2) possess these properties, thus making them attractive for, i.e., high-level radioactive waste immobilisation. The main drawback of these materials are the high temperatures and long residence times required to sinter them and obtain high densities, which entails high energy consumption and costs. Therefore, non-conventional microwave sintering is a very powerful and efficient technique capable of reducing sintering temperatures and holding times. The objective of this study is to evaluate the microwave sinterability of zircon-zirconia powders obtained by colloidal methods (80–20 vol% and 20–80 vol% ZrSiO4–ZrO2). A stability study of the phases present was carried out by X-ray diffraction and the mechanical and microstructural properties were evaluated in order to obtain the best materials with outstanding final properties.  相似文献   

14.
This article investigates effect of composition, including SiO2 and impurity defined to contain K2O, Na2O, Fe2O3, etc., from K-feldspar, on sinter-crystallization and properties of the low temperature co-fired α-cordierite glass–ceramics. Increasing impurity content from 5.72 wt% to 9.16 wt% leads to enhanced crystallinity, formation of leucite and more pores but the crystallinity and porosity decreased with a further increase to 10.8 wt%. The main impurity K2O is critical for formation of α-cordierite and leucite. Only α-cordierite was precipitated from the glasses with different SiO2 contents but an increase of SiO2 content slightly improves their densification. The impurity and SiO2 contents greatly affect the properties of glass–ceramics. Notably, some glass–ceramics from K-feldspar show high densification at low temperature, low dielectric constant (6–8), low loss (about 0.005), appropriate linear CTEs (4.32–5.87 × 10−6 K−1) and flexural strength (above 100 MPa), all of which meet the requirements of LTCC substrates.  相似文献   

15.
Nonlinear viscoelastic creep was studied on polypropylene/fumed silica nanocomposites. The free-volume theory of nonlinear viscoelastic creep was successfully applied to obtain generalized creep master curves using a tensile compliance vs. internal time superposition in the region of nonlinear viscoelasticity. Concurrently, a time–temperature superposition approach was also adopted for the construction of creep master curves. A good agreement between the time–strain and the time–temperature superposition approaches was assessed by comparing the master curves obtained from the two data reduction methods. Both approaches evidenced a remarkable stabilizing effect induced by the nanoparticles that was observed especially for higher creep stresses and at increased temperatures and, considering the correspondent superposition principle, at long loading times. At the same time, both storage and loss moduli measured through dynamic mechanical analyses, were enhanced in all nanocomposites. Activation energy values obtained from the analysis of dynamic multi-frequency tests were in good accordance with those referred to creep tests.  相似文献   

16.
The influence of uncertainties in heat–moisture transport properties, due to measurement errors and material heterogeneity, on the numerical simulation results of convective drying of two capillary-saturated porous materials is investigated by a transport-property parameter analysis (TP-PA), based on the Monte Carlo method. Here, the heat–air–moisture transfer model is evaluated many times, each time using a random set of one or multiple input parameters (i.e. transport properties), by which a stochastic model output is generated. The propagation of these transport-property uncertainties to the hygrothermal behaviour of the drying system is evaluated by statistical analysis of the model simulation output. The spread on the hygrothermal response is found to be strongly material dependent and is related to the dominant mode of moisture transport in the material, i.e. liquid or vapour transport. The TP-PA results clearly indicate that uncertainties in the heat–moisture transport properties can lead to significant differences in drying behaviour predictions, where differences of the total drying time with respect to its mean value up to 200% are found for the materials considered. Therefore, numerical modelling of heat and moisture transport in porous materials should preferably include a quantification of the propagation of these uncertainties, for example by means of the proposed transport-property parameter analysis. Such analysis, however, additionally requires detailed (a priori) experimental material characterisation to determine realistic uncertainty ranges.  相似文献   

17.
Alumina–zirconia composite ceramics (AZ composites) have been prepared in the whole range of compositions from pure alumina to zirconia (in steps of 10 vol.%) by slip casting, followed by sintering at 1350 °C and microstructural characterization via the Archimedes method (relative densities 0.93–0.99). Young's modulus has been measured at room temperature via the impulse excitation technique (IET) and, after appropriate porosity correction (linear, power-law, exponential), found to be in good agreement with the Hashin–Shtrikman bounds. The damping factor (internal friction), which has been measured for dense AZ composites (also via IET at room temperature), is found to increase with increasing zirconia content. Damping factors measured for porous AZ composites with porosities 25–71%, prepared with corn starch as a pore former, have been found to depend only slightly on porosity, unless the porosities are extremely high (>70%). At these porosities, however, where the Young's moduli approach zero, the damping factors exhibit a steep increase.  相似文献   

18.
《Ceramics International》2015,41(8):9931-9938
Li–Sr–Zn nanoferrites i.e. Li0.25Sr0.5–xZnxFe2.25O4, where ‘x’ varies from 0–0.5, have been synthesized using a low temperature solution combustion method which proves to be an efficient and economical technique for synthesizing these type of nanoferrites. The as-synthesized nanoferrites have cubic spinel structure as characterized by X-ray powder diffraction. Powder XRD and TEM (Transmission Electron Microscopy) characterization also evidence that the crystallite and particle size are in close agreement to each other. Mössbauer spectroscopy studies demonstrate that there is a gradual transition from ferrimagnetic to superparamagnetic character, which is also supported by the saturation magnetization and coercivity values. At room temperature, the nanoferrites were found to be superparamagnetic with negligible coercivities approaching towards zero while saturation magnetization values were found to be in the range 6.87–30.10 emu g−1. The frequency dependent dielectric constant and loss values are in accordance with Koop׳s model. These nanoferrites show great potential in high density recordings, magnetic nanodevices and biomagnetic applications.  相似文献   

19.
《Ceramics International》2015,41(4):5439-5444
An environmentally friendly NaCl–H2O system was developed to synthesize monodisperse strontium titanate (SrTiO3) nanoparticles from commercially available raw materials (SrCO3 and rutile) by solid state reactions. The formation rate of SrTiO3 was accelerated by the addition of NaCl and water vapor. Single phase SrTiO3 was obtained by calcination at 700 °C for 2 h in water vapor (H2O flow rate of 2.0 mL/min) by the addition of 50 wt% NaCl, although 900 °C and 750 °C for 2 h were required to complete the reaction by calcinations in air and air by the addition of 50 wt% NaCl, respectively. The results demonstrate that both NaCl and H2O played vital roles to accelerate the formation of SrTiO3 nanoparticles at relatively low temperature. On the basis of experiments and analysis, a rational growth mechanism has been proposed and discussed.  相似文献   

20.
Experiments were performed at both normal and rather extreme Fischer–Tropsch Synthesis (FTS) operating conditions over a typical cobalt-based catalyst, with the aim of exploring if aspects of the reaction mechanism could be elucidated. The results show that CO reacted when co-feeding C2H4 with syngas, while CO did not react with H2 in absence of C2H4, under extremely low-temperature conditions (140°C). The adsorbed CO and C2H4 may behave as monomers and initiators, respectively, and react with each other to form long chain hydrocarbons. It suggests that the C C bond coupling precedes the C O bond dissociation, which is consistent with the CO-insertion mechanism. C3–6 product distribution with a feed of H2/CO/C2H4 at low temperature followed the same trends in terms of normal FTS product distribution. The observed FTS-type chain growth reaction that occurs at abnormally low temperatures (140°C) when co-feeding C2H4 may provide new insights into the chemistry of FTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号