首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study is to estimate the drying characteristics of a relatively large material immersed in a fluidized bed under reduced pressure by measuring the constant drying rate. The constant drying-rate period in a fluidized bed under reduced pressure is difficult to measure because it is extremely short. To maintain the constant drying-rate period, distilled water is directly supplied to the drying material. Through our experiment, the heat transfer coefficient of the material surface was also determined. The results were compared with data on hot air drying. The constant drying rate is higher for fluidized bed drying than for hot air drying. It suggests that the heat transfer coefficient on the surface of the drying material is much larger for fluidized bed drying than for hot air drying. For fluidized bed drying, the effect of pressure in the drying chamber on the heat transfer coefficient is slight at the same normalized mass velocity of dry air (G/Gmf). The temperature difference between the inside of the drying chamber and the drying material is much smaller for fluidized bed drying than for hot air drying. The constant drying rate increases as the pressure in the drying chamber decreases.  相似文献   

2.
A relatively large wet material was immersed in a fluidized bed of hygroscopic porous particle (silica gel beads) under reduced pressure. And then the drying characteristics were compared with those in the case of inert particle (glass beads). The comparison of drying characteristics is performed experimentally and theoretically. In calculation, the water transfer from the sample to the fluidized bed was considered. The calculation results are in good agreement with the experimental data. The effects of the operational conditions (the pressure in the drying chamber and the temperature of the drying gas) on the drying characteristics were also examined in both fluidizing particles.The drying finishes earlier in the case of hygroscopic porous particle than in the case of inert particle regardless of pressure in the drying chamber, since the water transfer from the sample facilitates the drying in the case of hygroscopic porous particles. The temperature decrement in drying appears in the case of inert particle. This phenomenon is also observed in the case of hygroscopic porous particle, but the decrement degree of the temperature is much smaller than that in the case of inert particle. The difference of the minimum temperature in the sample in drying between the cases of hygroscopic porous particle and inert particle is very slight for different pressures in the drying chamber.  相似文献   

3.
洗衣粉悬浮液在惰性粒子流化床中干燥的研究   总被引:3,自引:0,他引:3  
针对气体分布板开直孔的惰性粒子流化床,开展了洗衣粉悬浮液在床内的干燥性能研究。测定了流化床的床层压降曲线,考察了进料量、进风温度、进风速度及惰性粒子直径对于流化床传热性能的影响,且与气体分布板开斜孔的传热性能进行了初步比较。结果表明,流化床的床层压降主要是由惰性粒子的流化阻力所致;适当增加进料量和进风速度,或减小惰性粒子直径,以及将气体分布板的孔道由直孔改为斜孔,均可提高流化床的传热性能,但过高的进风温度则可能导致传热性能的下降。  相似文献   

4.
Jimin Kim 《Powder Technology》2006,166(3):113-122
The effect of agitation on the fluidization characteristics of fine particles was investigated in a fluidized bed with an I.D. of 6 cm and a height of 70 cm. The agitator used was of the pitched-blade turbine type and phosphor particles were employed as the bed material. The particle size was 22 μm and the particle density was 3938 kg/m3. The effect of the agitation speed on the fluidization characteristics was examined by statistical (average absolute deviation (AAD), probability density function (PDF)), spectral (auto-correlation function, power spectrum) and chaos analysis (strange attractor, Hurst exponent, correlation dimension). The results showed that smoother fluidization was observed with increasing agitation speed, because the agglomeration and channeling were reduced by the mechanical agitation. The signals of the pressure drop fluctuation had the shape of a short-term correlation with different agitation speed. The void fraction increased with increasing agitation speed at the constant fluidizing gas velocity.  相似文献   

5.
简单介绍了卧式沸腾干燥床干燥工艺的工艺流程及特点,比较了目前PVC生产中的几种干燥工艺,分析了卧式沸腾干燥床在实际生产中存在的问题及改进措施。  相似文献   

6.
Three-dimensional simulations have been carried out to examine the gas–particle flow behavior of tobacco material in a fluidized bed dryer. The Euler–Euler model has been used to study the distribution of particles in the fluidized bed dryer. The simulation results indicate that tobacco particles usually concentrate in the near-wall region, and there exists a maximum particle concentration in the feed pipe. The predictions on the regions with high concentration of particles in the fluidized bed dryer agree well with the experimental findings. Moreover, this kind of dynamic particle aggregation might lead to particle clusters, and investigations of the particle motion and mixing behavior in the simulated systems indicate that there are particle clusters during fluidization. The diverse nature of clusters enriches the flow behaviors of particles and consequently leads to the macro-scale heterogeneity featuring fast fluidization: dilute at the top and dense at the bottom in the axial direction as well as the core–annulus structure in the radial direction. Therefore, the particle clusters is one of the key problems in drying processes, which must be known for understanding the material distribution inside the dryer, as well as for the system design of fluidized bed dryers. According to the results, some improvements on the fluidized bed dryer have been brought out and the relative numerical experiments have been performed. The numerical experiments show that the improvements can realize better uniformity and lead to a decrease in the particle concentration, which provides useful ways to solve the clustering problem.  相似文献   

7.
实验考察了惰性粒子流化床干燥钻井废泥浆,关联了干燥器的体积传热系数表达式,可定量计算进风速度、进风温度、废泥浆体积流量和含水量等参数的影响。结果表明,惰性粒子流化床干燥热效率达55%,体积传热系数可达6kW·m^-3·K^-1,可用于钻井现场柴油机废气干燥钻井废泥浆。激光粒度分析仪测试干燥产物粒度平均值为12/μm,且分布较为集中,其密度为3.2g·cm^-3,可以回用于钻井泥浆的加重材料。浸毒试验表明,干燥产物CODCr值大幅度下降。  相似文献   

8.
9.
The main objective of this work was to experimentally and numerically investigate the Liu Shu River oil shale drying by the means of flue gas in a fluidized bed dryer. Several experiments were performed under different temperatures conditions. The moisture content of oil shale was measured during the experiments. The two-stage drying model was incorporated in computational fluid dynamics (CFD) package FLUENT via user-defined functions (UDF) and utilized for simulation of heat and mass transfer of oil shale drying in the fluidized bed dryer. The simulation results for solid moisture content agreed well with experimental data. The effects of the temperature and velocity of flue gas, initial bed height, and the particle size on the drying characteristics were predicted and analyzed. It is shown that the gas temperature and velocity are the important parameters in the whole drying process. The particle size has more obvious influence in the falling drying period than the constant drying period. The temperatures of gas and solid phases were monitored. It is shown that the so-called “near gas distributor zone” is the most effective heat transfer zone, which agrees well with the calculated value. The system quickly reached thermal equilibrium, characterizing a nearly isothermal bed. The developed model provides a very good demonstration to describe the oil shale drying in the fluidized bed dryer, and may provide important information for design, optimization of operation conditions.  相似文献   

10.
This paper presents an experimental method for studying the fragmentation of coal particles during coal combustion in a fluidized bed and the quantitative fragmentation indexes of 10 typical Chinese coal ranks. The influences of a variety of factors such as the bed temperature, the size of coal particles, the coal rank and the fluidizing medium on the fragmentation index of coal particles are also studied. The research results show that the main reason for the fragmentation of coal particles is the primary fragmentation, and that the volatile matter can drastically influence the degree of fragmentation of coal particles.  相似文献   

11.
文章以聚四氟乙烯粒子和蔗糖为物料研究了旋流振动流化床的流体力学及干燥特性,并与振动流化床的各种特性进行了对比。实验在一个干燥室直径为240 mm的小型圆筒振动流化床中进行,采用斜孔分布板使床内产生旋流。实验结果表明:在空气分布板开孔率相差不多的情况下,物料流化以前,旋流振动流化床的床层压降要大于普通振动流化床,一旦物料达到正常流化状态以后,2种振动流化床的床层压降相差不多;旋流振动流化床可以降低物料的临界含湿质量分数。  相似文献   

12.
This work aimed to intensify the mass transfer between fluidizing gas and Geldart-B nonmagnetizable particles by simultaneously introducing magnetizable particles and applying the magnetic field. The mere addition of magnetizable particles hardly affected the interphase mass transfer. Moreover, such mass transfer was not improved by the subsequent application of the magnetic field under the magnetization-LAST operation mode. However, the mass transfer was significantly enhanced by the magnetic field in the magnetic stabilization and transition flow regimes under the magnetization-FIRST operation mode. Apparently, the mass transfer intensification depended not only on the magnetic field intensify (H) but also on the operation mode. The gas–solid contact performance in the magnetic stabilization flow regime was always comparable to that in fixed beds. Hence, further increases in H could not raise the magnitude of intensification but only increase the operating range and stability of the magnetic stabilization, which was in metastable equilibrium.  相似文献   

13.
Analyzing the attrition of Victorian brown coal during air and steam fluidized bed drying, the change in particle size distribution over a range of initial moisture contents (60% to 0%) and residence times (0 to 60 minutes) was determined. Dried at a temperature of 130°C with a fluidization velocity 0.55 m/s and an initial particle size of 0.5–1.2 mm, both fluidization mediums show a shift in the particle size distribution between three and four minutes of fluidization, with a decrease in mean particle size from 665 µm to around 560 µm. Using differential scanning calorimetry (DSC), the change in particle size has been attributed to the transition between bulk and non-freezable water (approximately 55% moisture loss) and can be linked to the removal of adhesion water, but not to fluidization effects. This is proved through the comparison of air fluidized bed drying, steam fluidized bed drying, and fixed bed drying—the fixed bed drying is being used to determine the particle size distribution as a function of drying. The results show the three drying methods produce similar particle size distributions, indicating that both fluidization and fluidization medium have no impact upon the particle size distribution at short residence times around ten minutes. The cumulative particle size distribution for air and steam fluidized bed dried coal has been modeled using the equation Pd = A2 + (A1 ? A2)/(1 + (d/x0)p), with the resultant equations predicting the effects of moisture content on the particle size distribution. Analyzing the effect of longer residence times of 30 and 60 minutes, the particle size distribution for steam fluidized bed dried coal remains the same, while air fluidized bed dried coal has a greater proportion of smaller particles.  相似文献   

14.
The slug characteristics (frequency, rising velocity and length) have been determined by analyzing pressure fluctuations in a fluidized bed (0.38 m-I.D.x4.4m-high) of linear-low-density-polyethylene (LLDPE) and polypropylene (PP) particles. The slug characteristics of LLDPE and PP particles have been determined as a function of gas velocity (0.6-1.2 m/s) and the axial height (0.65–1.15 m) from the distributor. The rising velocity and vertical length of slug increase with increasing superficial gas velocity and the axial height of the bed. The slug shape of LLDPE particles is found to be the square-nose whereas that of PP particles is the round-nose. The slug frequency and its length have been correlated in terms of the excess fluidizing velocity, column diameter and bed height based on the data from the present and previous studies.  相似文献   

15.
The effect of louver baffles on the particle concentration profiles, pressure fluctuations, bed expansion, and gas mixing of a fluidized bed was investigated in a transparent 2-D column of cross-section 500×30 mm and height 6 m over a broad range of operating conditions covering both the bubbling and turbulent flow regimes. Visual observations, pressure fluctuations and steady gas tracer experiments showed that louver baffles can break bubbles, as indicted by the lower amplitudes and higher mean frequencies of differential pressure fluctuations, but they were only effective for superficial gas velocities <∼0.7 m/s for the FCC particles considered in this study. The ability of louver baffles to break bubbles reached a maximum near the onset of the turbulent flow regime. A gas cushion of low particle concentration appeared below the louver baffle, and its height increased with increasing superficial gas velocity, indicating increasing suppression of solids backmixing. Internal emulsion circulation was promoted above the louver baffle, causing an uneven distribution of gas flow. The addition of louver baffles reduced the upstream tracer gas concentrations by 80-90%, indicating a significant decrease in the backmixing fluxes of both gas and solids across the baffle layer. The tracer gas concentrations above the louver baffles increased resulting from the promoted emulsion circulation by louver baffles.  相似文献   

16.
为将循环流化床(CFB)技术应用于C类颗粒(<30μm)的干燥,在自建的循环流化床(内径0.104 m×高2.35 m)内,以玉米淀粉(dp=8 μm,ρp=800 kg/m3)为研究对象,考察了不同操作参数对其干燥特性及干湿分离情况的影响.结果表明:循环流化床适用于C类颗粒的干燥;干燥速率随气速及进风温度的增大而增大...  相似文献   

17.
Gasification of coal and PET in fluidized bed reactor   总被引:1,自引:0,他引:1  
Blended fuel comprising 23 wt.% polyethyleneterephthalate (PET) and 77 wt.% brown coal was gasified in an atmospheric fluidized bed gasifier of laboratory-scale. The gasification agent was composed of 10 vol.% O2 in bulk of nitrogen. Thermal and texture analyses were carried out to determine the basic properties of the fuel components. The influence of experimental conditions, such as the fluidized bed and freeboard temperatures on major and minor gas components and tar content, as well as features of the blended fuel gasification in comparison with the single coal gasification, were studied. In the case of coal with PET gasification, only the fluidized bed temperature showed significant influence on CO, CO2, CH4 and H2 content in the producer gas, whereas the effect of the freeboard temperature was insignificant. In single coal gasification both temperatures had considerable and almost the same influence. The content of minor components, such as ethane, ethylene, acetylene and benzene, was found to be more dependent on the freeboard temperature than on the fluidized bed temperature. It was observed that the higher the freeboard temperatures get, the lower is the concentration of the minor components, with the exception of acetylene. The absolute contents of almost all minor and tar components were approximately three times higher in blended fuel gasification than that in single coal gasification. Finally, partition of carbon (char) and selected metals into bottom and cyclone ash in gasification of both fuels is discussed.  相似文献   

18.
Abstract

This work evaluated the effect of ultrasonic pretreatment on the production of dehydrated apples (Malus domestica L. var Granny Smith) in a fluidized bed dryer. Cube-shaped apple samples were subjected to ultrasound in an ultrasonic bath and dried in a fluidized bed drier. The experimental design evaluated the effect of ultrasound pretreatment time (0 to 30?min) on the soluble solids loss during pretreatment and on the drying time. The ultrasonic pretreatment was carried out in a bath ultrasound operating at 25?kHz and outputting 55?W/m3 of power density. Distilled water was applied in the pretreatment to produce low-calorie apple cubes. Fluidized bed drying was carried out at 30, 40, and 50?°C. Fick’s law was used to model the drying process and to determine the apparent water diffusivity. The soluble solid loss ranged between 8.7 and 21.2% during the pretreatment, and the apparent water diffusivity during air drying ranged from 1.09?×?10?6 to 2.81?×?10?6 m2/min. Ultrasound pretreatment increased the apparent water diffusivity up to 58%. Apple cubes subjected to 20?min of ultrasound pretreatment and dried at 50?°C presented the highest apparent water diffusivity and dried to achieve a water activity of 0.4 in 100?min.  相似文献   

19.
循环流化床回流物料循环的特性   总被引:1,自引:0,他引:1  
为了研究循环物料在流化床内回流并参与循环的过程,进一步揭示流化床内物料的循环特性,文中搭建了冷态循环流化床顶部回流试验台。利用激光多普勒粒子动态分析仪(PDA)对塔内颗粒回流时床内气固二相流场和颗粒浓度分布进行了测量。同时对物料回流量和床内表观气速等操作条件对回流过程的影响进行了考察。研究表明,回流颗粒在流化床内的返混可以分为3个区域:回流区、返混加速区和主流区,回流颗粒造成床内流场的不均匀性。回流长度主要受物料回流量和床内表观气速影响。  相似文献   

20.
A. Sahoo 《Powder Technology》2005,159(3):150-154
The mixing characteristic of large particles (Geldart BD type) has been investigated in a cylindrical gas-solid fluidized bed. Based on dimensional analysis, a correlation for the mixing index has been developed with the system parameters viz., average particle size of the mixture, initial static bed height, height of the particles' layer in the bed (from where the sample is drawn) and superficial velocity of the fluidizing medium. A theoretical model for the mixing index has been developed based on the counter flow of solids with circulation and horizontal dispersion. A comparison has been made for the values of the mixing index calculated by both the theoretical and the experimental models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号