首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work focused on high-temperature convective drying (superheated steam drying). The process has been investigated both experimentally and numerically. The experimental analysis was carried out in an aerodynamic return-flow wind-tunnel, with very small cylinders of cellular concrete. For the local analysis, the samples were fitted with thermocouples and pressure sensors. The mean moisture content of the cylinders was measured by simple weighing while the temperature and pressure readings were being taken. Global and. local analysis of heat and mass transfer in small cylinders in superheated steam were carried out. The systematical study for several sizes and aerothermal conditions show a similar behavior for moisture content, pressure and temperature values. A numerical model for high temperature drying, using the finite elements method, in a 2-D configuration, was implemented and validated.  相似文献   

2.
S. Pang  M. Dakin 《Drying Technology》2013,31(6):1135-1147
Abstract

Two charges of green radiata pine sapwood lumber were dried, either using superheated steam under vacuum (90°C, 0.2 bar abs.) or conventionally using hot moist air (90/60°C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air.

The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying. Wood temperatures in superheated steam drying were lower.  相似文献   

3.
ABSTRACT

Low-fat snack products are the driving forces for the drying of tortilla chips before frying. Super-heated steam impingement drying of foods has the advantage of improved energy efficiency and product quality. The temperature profile, drying curves, and the physical properties (shrinkage, crispiness, starch gelatinization and microstructure) of tortilla chips dried at different superheated steam temperatures and heat transfer coefficients were measured. Results indicated that the steam temperature had a greater effect on the drying curve than the heat transfer coefficient within the range of study. The microstructure of the samples after steam drying showed that higher steam temperature resulted in more pores and coarser appearance. The modulus of deformation and the shrinkage of tortilla chips correlated with moisture content. A higher steam temperature caused less shrinkage and a higher modulus of deformation. The pasting properties showed that samples dried under a higher steam temperature and a higher heat transfer coefficient gelatinized less during drying and had a higher ability to absorb water. Comparison of the superheated steam drying and air drying revealed that at elevated temperatures the superheated steam provided higher drying rates. Furthermore, there was a less starch gelatinization associated with air drying compared to superheated steam drying.  相似文献   

4.
ABSTRACT

The work considers the application of the flash drying to the moisture removal of fishmeal using superheated steam as transport medium. Heat, momentum and mass transfer equations were applied and an algorithm based on these equations was developed and solved. The model was validated using experimental data obtained in a pilot pneumatic dryer ( total length 60 m) provided with a steam jacket to maintain the superheated steam at a constant temperature. The drying time was less than 10 s to decrease the fish meals moisture content from 53.5% to 28% d.b. and in a second pass by the dryer the moisture down to 16.9% using superheated steam at It 1 ° C and 130 ° C in the jacket. The computational results are in agreement with the experimental data.  相似文献   

5.
A series of drying experiments was performed in a reduced-pressure superheated steam fluidized bed, employing pepper seed particles and some novel data were obtained. Experiments were carried out using different chamber pressures (40–67 kPa), temperatures (90–122°C), steam velocities (2.35–4.10 m/s), and mass flow rates (0.0049–0.0134 kg/s). In the majority of the experiments, the moisture gain observed in some other studies in the warm-up period of the process was prevented through some supplementary heat provided to the column. The drying rate was found to be increasing by operating temperature; however, it was not affected much by the superficial gas velocity and the operating pressure. Nevertheless, the reduced pressure operation increases the degree of superheating that appears as the most important parameter of the process. The experimental results showed that the equilibrium moisture content decreases by the increasing degree of superheating. On the other hand, the critical moisture content assumes higher values for the greater degrees of superheating. It was concluded that a relatively lower temperature process can be achieved through a reduced-pressure superheated steam fluidized bed.  相似文献   

6.
Patrick Perre 《Drying Technology》2013,31(5-7):1077-1097
ABSTRACT

Different drying configurations (convective drying with moist air and superheated steam, microwave drying and vacuum drying) on different materials (isotropic and anisotropic) were experimentally studied in order to model and visualise the evolution of internal pressure and temperature. To be able to do so, in addition to measuring the average moisture, a method which can determine internal-local pressure and temperature simultanously by using specially designed sensors was developed. In combination with the experiments, the numerical code TRANSPORE has been used to simulate drying processes. A less comprehensive but more comprehensible analytical model was also provided to facilitate the better understanding of internal phenomena. Based on the results gained from measurement and numerical analysis, the dynamic distribution and development of local temperature and pressure inside seasoned medium are coupled together by a temperature-pressure graph, which is herewith called “Identity Drying Card” (IDC), a new concept initialid in the paper. By using IDC, the internal profile of temperature and pressure, the dominant transport properties (penncability and difisivity), the mechanism of transport (diffusion, convection or both) and the phase transitions during drying can be visualised. More specifically, the amount of dry air, the moisture content in the hygroscopic rcgion or the danger due to internal mechanical loads of handled materials can be figured out with the aid of IDC.  相似文献   

7.
S. Pang 《Drying Technology》2013,31(2):651-670
ABSTRACT

A mathematical model for high-temperature drying of softwood lumber with moist air has been modified and extended to simulate wood drying with superheated steam. In the simulation, differences between the two types of drying are considered, these include: external heat and mass transfer processes and calculation of equilibrium moisture content. The external mass transfer coefficient in the perheated steam drying was found to be much higher than that in the moist air drying, however, the heat ransfer coefficients for these two cases were of the same order. The predicted drying curves and wood temperatures from the superheated steam drying model were compared with experimental data and there was close agreement. Further studies will apply the model to development of commercial drying schedules for wood drying with superheated steam.  相似文献   

8.
Drying characteristics of coriander seed particles were experimentally analyzed in a reduced pressure superheated steam fluidized bed. The typical moisture gain, reported in some other studies during the warm-up period of the process, was reduced in most of the cases by supplying additional heat into the column. The experimental results demonstrated that the drying rate increases and the equilibrium moisture content decreases by increasing the operating temperature. However, variation of the operating pressure (40–67 kPa) and the superficial steam velocity (2.3–4.0 m/s) did not present significant effects on the moisture contents. The degree of superheating was found to be the most important parameter for the process. The experiments also showed that the equilibrium moisture content decreases upon increasing the degree of superheating. Finally, employing a reduced pressure superheated steam fluidized bed appears as an option to carry out drying processes at relatively lower temperatures.  相似文献   

9.
ABSTRACT

Transferring the necessary heat of evaporation to the stack is the bottleneck in convective vacuum drying of wood. Higher gas velocities are applied to compensate for the lower gas density and to obtain similar heat and mass transfer characteristics as under normal pressure. Like in conventional kiln drying the region with the most unfavorable drying conditions determines drying time and product quality. To use the full potential of the meanwhile established superheated steam vacuum drying technology, it is therefore necessary to work on an improved uniformity of process conditions in the kiln.

To evaluate the fluid dynamics and its influence on the final moisture content, experimenls in a laboratory convective vacuum kiln were carried out. For different total pressures the profiles of dynamic pressure in the stack entry section were measured in a dry atmosphere. At normal pressure the profiles were determined between the board layers throughout the whole stack. For the same slack configuration vacuum drying tests were used to assess the impact of the velocity distribution in the slack on the final moisture content distribution-Regions of low gas velocities coincided well with regions of high final moisture content.  相似文献   

10.
《Drying Technology》2013,31(8):2063-2079
A new drying method of combined superheated steam and microwave drying is being proposed. The drying rates of sintered glass beads in combined superheated steam and microwave drying are experimentally and theoretically investigated. Drying experiments have been carried out in a waveguide where a standing wave is formed to uniformly heat a small sample. Concerning drying rate curves in combined superheated steam and microwave drying, a distinct constant rate period has been observed. For the falling rate period, high drying rates have been observed. For both periods, the drying rates in combined superheated steam and microwave drying are higher than those in superheated steam alone. Also, in comparison with the results of combined nitrogen and microwave drying, the normalized drying rates in combined superheated steam and microwave drying are higher than those at less than the critical moisture content in combined nitrogen and microwave drying. Moreover, theoretical drying rates for the falling rate period (predicted by a modified receding evaporation front model) in combined superheated steam and microwave drying, are in good agreement with the observed drying rates. The combined superheated steam and microwave drying method can attain higher drying rates under mild external conditions.  相似文献   

11.
Abstract

The superheated steam drying at reduced pressure is performed, and the effects of operational conditions such as drying pressure and temperature on the drying characteristics are examined. In order to obtain the basic guideline for the design of the superheated steam dryer at reduced pressure, the heat flux to sample was calculated and the optimal conditions were estimated.

After the sample temperature reached at the boiling point, the temperature was maintained at the boiling point and the drying rate became almost constant. Once the sample was dried out, the temperature suddenly increased up to the drying gas temperature. From the calculation of combined heat flux, the followings were found. The contribution of radiative heat transfer to the combined heat flux became larger as the drying pressure was lower. The combined heat flux had a maximum value against the drying pressure. The optimum drying pressure, which gave the maximum heat flux, became lower as the drying gas temperature decreased. It was found that reduction in the drying pressure is effective for the enhancement in drying performance.  相似文献   

12.
《Drying Technology》2013,31(8):1845-1867
Abstract

Using carrot cubes as a model heat-sensitive material, experimental investigations were conducted to examine the drying kinetics and various quality parameters of the dried product undergoing both low-pressure superheated steam and vacuum drying. Effects of operating parameters such as pressure and temperature on the drying characteristics as well as quality attributes, i.e., volume, shrinkage, apparent density, color, and rehydration behavior, of the dried product underwent the two drying processes were also evaluated and compared. Although low-pressure steam drying required longer dwell time to achieve the same final moisture content than vacuum drying, some of the quality attributes were superior to those obtained in vacuum drying.  相似文献   

13.
《Drying Technology》2013,31(7):1419-1434
ABSTRACT

Drying of porous solids was experimentally investigated in superheated steam as well as in air. Drying rate curves, including critical moisture contents, in steam at subatmospheric pressure, were compared to those for air at atmospheric pressure; moreover, they were compared to those for steam at atmospheric pressure as well. The former comparison was carried out under conditions of sample temperatures of 41.8–42.5°C (which were nearly equal to saturation temperatures of 42.1–42.2°C at pressures of 8.23–8.30 kPa) for the constant rate period in steam and the corresponding sample temperatures of 42.0–45.0°C (which were close to the wet-bulb temperatures) for the constant rate period in air. There were distinct differences between normalized drying rate curves, including critical moisture contents in steam and in air at the above similar sample temperatures for materials of baked clay, firebrick, and cemented glass balloons over the minimum value of 8.3 × 10?3 µm and up to the maximum value of 1.2 × 102 µm in cumulative pore-size distributions: longer constant rate periods and lower critical moisture contents in steam than in air, and higher drying rates in steam than in air for the falling rate period. Moreover, the latter comparison of the drying rates in steam at subatmospheric pressure to those in steam at atmospheric pressure revealed that the differences in normalized drying rates between subatmospheric pressure and atmospheric pressure were small for both materials under mild external conditions. These findings were common to the baked clay, firebrick, and cemented glass balloons over a wide range of pore-size distributions studied in the present work, as well as sintered coarse glass beads as previously reported.  相似文献   

14.
The objective for this work was to develop a novel technique for creating instant noodles by determining the drying kinetics of noodles undergoing simultaneous drying and processing using superheated steam. The mathematical model of moisture ratio was differentiated to determine the drying rates of noodles during processing. There was a constant rate drying period for all temperatures at a steam velocity of 1.5 m/s but there was no constant rate drying period at a steam velocity of 0.5 m/s. The constant rate drying period suggested by measurement of internal noodle temperature is much longer and well defined for all processing conditions than from the drying curves. The constant drying rate period, was nearly 200 s at 110°C but decreased to 50 s at 150°C. Equilibrium moisture content isobars were determined from mass changes during superheated steam processing. It was determined that isotherm equations for equilibrium moisture content in hot air systems may be utilized to model isobars in superheated steam systems.  相似文献   

15.
ABSTRACT

The physical properties of air and superheated steam were analysed in a range of temperature applied in paper and paperboard drying processes. On the basis of tests carried out on a pilot stand the values of energy indices for air and steam drying processes are compared. With the drying media temperature as Tm = 300°C, nozzle velocity v= 60m/s and using the Huang and Mujumdar model as well as relationships given by Chance a compartive analysis of the results has been carried out Variation of several indices in the range of temperatures 100-600°C and various nozzle velocities was studied.  相似文献   

16.
Moisture equilibrium of wood and bark chips in superheated steam   总被引:3,自引:0,他引:3  
Hans Bjrk  Anders Rasmuson 《Fuel》1995,74(12):1887-1890
This study relating to the steam drying of biofuels suggests that the activities of water in air (defined as relative humidity) and of water in superheated steam (defined as the ratio of the saturated pressure and the saturated pressure at the superheated temperature) are identical. The dependence of the activity in superheated steam on the equilibrium moisture content was studied in various experiments for different wood materials at constant temperatures of 140 and 160°C. The equilibrium moisture content was found to depend on the following factors: the activity of the superheated steam, the temperature and the materials used, the first of these being the most important. The experimentally determined sorption isotherms were compared with different sorption theories. The Dent model gave a good correlation with the experimental data. The sorbed water can be divided into primary water with high binding energy and secondary water with low binding energy. If biofuels are to be dried with superheated steam, an equilibrium moisture fraction of 0.05 seems to be relevant. It will probably be possible to reach this with activities in the range 0.2–0.4 for all real materials.  相似文献   

17.
ABSTRACT

The drying of paper under impinging jets of superheated steam and air during the falling rate period was investigated in the range of jet temperatures 150 < Tj < 450oC and basis weights 30 < B < 150 g/m2. The equilibrium moisture content of Kraft and TMP paper was measured. The adsorption energy of water on pulp fibers near the boiling point appears lower than the value extrapolated from Prahl s (1968) measurements made in air at lower temperatures. The critical moisture content was determined for superheated steam and air impingement drying. Complete drying rate - moisture content histories are presented for a series of typical conditions.  相似文献   

18.
ABSTRACT

Drying experiments with single, porous spheres wetted with mixtures of 2- propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2- propanol and water, internal boiling can occur depending on the vapor–liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.  相似文献   

19.
《Drying Technology》2013,31(7):1411-1424
Drying experiments were conducted on raw potato slices, using atmospheric pressure superheated steam and hot air as drying media at 170 and 240°C. Mass changes of the material were continuously measured, the conditions of cross section near the surfaces were observed with an electron microscope, also color changes of their surface were measured during drying. The respective drying methods and temperature conditions were compared and it was found that, in the case of superheated steam drying, moisture content temporarily increases due to steam condensation in the initial stage of drying, therewith, as well as starch gelatinization rapidly develops. Meanwhile, in case of hot air drying, starch gelatinization occurs more slowly than with superheated steam drying and that non-gelatinized starch granules remain on the surface when drying was completed. Furthermore, surface color measurements showed that samples dried by superheated steam were more reddish than ones dried by hot air and the surfaces were more glossy, because no starch granules remain on the surface in case of superheated steam drying.  相似文献   

20.
DRYING OF SLICED RAW POTATOES IN SUPERHEATED STEAM AND HOT AIR   总被引:2,自引:0,他引:2  
Drying experiments were conducted on raw potato slices, using atmospheric pressure superheated steam and hot air as drying media at 170 and 240°C. Mass changes of the material were continuously measured, the conditions of cross section near the surfaces were observed with an electron microscope, also color changes of their surface were measured during drying. The respective drying methods and temperature conditions were compared and it was found that, in the case of superheated steam drying, moisture content temporarily increases due to steam condensation in the initial stage of drying, therewith, as well as starch gelatinization rapidly develops. Meanwhile, in case of hot air drying, starch gelatinization occurs more slowly than with superheated steam drying and that non-gelatinized starch granules remain on the surface when drying was completed. Furthermore, surface color measurements showed that samples dried by superheated steam were more reddish than ones dried by hot air and the surfaces were more glossy, because no starch granules remain on the surface in case of superheated steam drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号