首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present work is to find the possibility of reducing the high initial moisture content of wet paddy using a small-scale, low-cost pneumatic conveying dryer that can be provided for each farming household. The dryer without a cyclone equipped at the exit of the dryer is studied and the data obtained from this system is compared with those obtained previously from the dryer with a cyclone. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, and drying air temperature from 35 to 70°C. From the experimental results it is found that the drying process with and without a cyclone are able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. For the same experimental conditions, the cyclone-equipped dryer gives around 1% higher decrease of moisture content, 2°C higher average surface temperature of paddy, 3-4% higher average percentage of head rice yield, and 2 kg/h higher average evaporation rate. However, the energy consumption per evaporated mass of water is 20-30% lower than the non-cyclone-equipped dryer.  相似文献   

2.
Energy consumption and rice quality are the main concerns of millers and must be assessed to ascertain suitable industrial drying strategy. In this article, industrial paddy drying methods as usually practiced in the BERNAS paddy drying complexes of Malaysia have been evaluated. The analysis showed that the specific electrical and thermal energy consumption varied between 16.19 kWh to 22.07 kWh and 787.22 MJ to 1015.32 MJ, respectively, in single-stage paddy drying (SSPD) using an inclined bed dryer (IBD) to dry each tonne of freshly harvested paddy with average moisture content of 23.35 ± 0.86% wb. On the other hand, the energy consumptions for two-stage paddy drying (TSPD) with a fluidized bed dryer (FBD) followed by IBD were 21.37 kWh/t to 30.69 kWh/t and 666.81 MJ/t to 1083.42 MJ/t, respectively. SSPD at 35–39°C and TSPD using FBD at 120°C as the first stage, followed by IBD as the second stage at lower temperature of 35–39°C yielded 2–3.6% higher head rice yield than paddy-dried by a single stage with IBD using comparatively higher temperature of 40–44°C. Therefore, IBD is recommended to be operated using a temperature of 35–39°C both in single-stage drying and second-stage drying of paddy after fluidized bed drying to obtain quality rice.  相似文献   

3.
This article describes the testing of a pilot-scale superheated-steam fluidized-bed dryer for parboiled rice along with development of a mathematical model for predicting the changes in temperature of steam and moisture content of parboiled rice during drying. Based on the obtained results, it was found that the superficial velocity of steam from 1.3 to 1.5 times of the minimum fluidization velocity had no significant effect on the drying rates of rice. The energy consumption for reducing the moisture content of paddy from 0.43 to 0.22 kg/kg dry basis was approximately 7.2 MJ/kg water evaporated. Drying temperature caused the appreciable change of parboiled rice qualities as characterized by water adsorption, whiteness and pasting viscosities, white belly, and hardness. Soaking paddy at a temperature of 70°C for 7–8 h before drying was sufficiently enough for producing parboiled rice, with no white belly. The gelatinization of starch during drying resulted in higher head rice yield of the product as compared to that of raw paddy.  相似文献   

4.
This article studies the possibility of reducing the high initial moisture content of wet rough rice using a small-scale low-cost pneumatic conveying dryer as a first stage dryer. The parameters investigated are final moisture content, surface temperature of rough rice, head rice yield, drying rate, power consumption per unit mass of evaporated water, and physical characteristics of rice. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, initial moisture content from 22 to 26% (wet basis), and drying air temperature from 35 to 70°C. From the experimental results, it is found that this drying method can be used for fresh rough rice with an initial moisture content of over 24% (wet basis). The drying process is able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. The moisture content can be reduced to approximately 18% (wet basis) or about 5–6% of the initial moisture content within 3–4 s. The optimal drying air temperature is in the range of 50 to 60°C. A comparison of pneumatic conveying drying data obtained from the present study with fluidized bed drying data reported in the open literature is also discussed.  相似文献   

5.
《Drying Technology》2013,31(7):1731-1754
Abstract

As reported by many researchers, it was found that fluidized bed paddy drying using high drying air temperatures of over 100°C affected the head rice yield and whiteness of dried rice. However, only a few studies on fluidized bed paddy drying with drying air temperatures below 100°C were so far reported. The main objective of this work was therefore to study the effect of fluidized bed drying air temperature on various quality parameters of Suphanburi 1 and Pathumthani 1 Indica rice. Paddy was dried from the initial moisture contents of 25.0, 28.8, and 32.5% dry basis to 22.5 ± 1.2% dry basis using inlet drying air temperatures between 40 and 150°C at 10°C/step. After fluidized bed drying, paddy was tempered and followed by ambient air aeration until its final moisture content was reduced to 16.3 ± 0.5% dry basis. The results showed that the head rice yield of Suphanburi 1 was significantly related to the inlet drying temperature and initial moisture content whilst there was no significant relationship between the head rice yield, drying temperature and initial moisture content for Pathumthani 1. The whiteness of the two rice varieties was slightly decreased with increase in drying air temperature and initial moisture content. It was also found that the hardness of both cooked rice varieties exhibited insignificant difference (p < 0.05) comparing to rewetted rice, which was gently dried by ambient air aeration in thin layer. The thermal analysis by DSC also showed that partial gelatinization occurred during drying at higher temperatures. Using inlet drying air temperatures in the range of 40–150°C therefore did not affected the quality of cooked rice and paddy. The milling quality of paddy was also well maintained.  相似文献   

6.
A method for rapid drying of parboiled paddy via the use of an impinging stream dryer was proposed and assessed. The effects of the drying air temperature, number of drying cycles, as well as time of tempering between each drying cycle on the moisture reduction, head rice yield, and whiteness index of the dried parboiled paddy were studied. The drying experiments were carried out at drying air temperatures of 130, 150, and 170°C; inlet air velocity of 20 m/s; impinging distance of 5 cm; and paddy feed rate of 40 kgdry_paddy/h. Parboiled paddy was dried for up to seven cycles. Between each drying cycle the parboiled paddy was tempered for a period of either 0 (no tempering), 15, 30, 60, or 120 min. After impinging stream drying, paddy was ventilated by ambient air flow until its moisture content reached 16% (db). Moisture reduction of the paddy was noted to depend on both the impinging stream drying temperature and tempering time. Drying at a high temperature along with tempering for a suitable period of time could maintain the head rice yield of the paddy at a level similar to that of the reference parboiled paddy. To avoid discoloration and low head rice yield, parboiled paddy should not be dried at a temperature higher than 150°C and should be tempered for at least 30 min.  相似文献   

7.
ABSTRACT

The objectives of this research are to design, construct and test a mobile fluidized bed paddy dryer with a drying capacity of 2.5-4.0 t/h. Suitable drying conditions are recommended as follows : drying capacity 3.8 t/h, bed velocity 2.8 m/s, average drying air temperature 144 °C, bed height 13.5 cm, fraction of air recycled 0.8. Residence time of paddy was approximately 1.3 minutes. Test results showed that moisture content of paddy was reduced from 32.6 % dry-basis to 25.8 % dry-basis. Consumption of electrical power and diesel fuel was 12.9 kW and 21.71 1/h respectively. Primary energy consumption was 910.9 MJ/h. The dryer could evaporate water 218.8 kg/h. Specific primary energy consumption was 4.2 MJ/kg-water evaporated. Cost of paddy drying was 1.48 baht/kg-water evaporated of which 0.53 was fixed cost and 0.95 was energy cost (US$1 =34baht).  相似文献   

8.
《Drying Technology》2013,31(6):1049-1064
Abstract

The main objective of this work is to study the rice whiteness and paddy qualities of rice in terms of hardness, stickiness, cohesiveness, and germination of rice. The prediction results of moisture content and whiteness are compared with the experimental results using a near-equilibrium drying model, which is modified by including whiteness kinetics of rice kernel. The long grain rice (Suphanburi 1 high amylose indica variety), which consists of 27% amylose was used for all experiments. The experiments were carried out at the average ambient temperature range of 28.6–30.8°C, average relative humidity of 65.2–80.6% with a fixed bed depth of 1.0 m. Specific air flow rates of 0.65 and 0.93 m3/min-m3 of paddy were forced continuously through the paddy bulk at initial moisture contents of 18.5% and 20.1% wet basis, respectively. The desired final moisture content of paddy is about 13.3 ± 0.6% wet basis. The results show that drying rate and the whiteness predictions are in good agreement with those from the experiments. The in-store drying using ambient air condition did not produce notable effect on the rice whiteness, head rice yield, and the percentage of paddy germination. However, the hardness, stickiness, and cohesiveness of rice were changed.  相似文献   

9.
An industrial-scale prototype of spouted bed dryer with a capacity of around 3500 kg/h was constructed and tested. The prototype is shown to have a desirable feature of a spouted bed as well as the capability of continuous drying and offering consistent results throughout the testing period. Experimental results show that the prototype performs well in reducing the moisture content of the paddy and yields high product quality in terms of the milling quality. The high temperatures up to 130–160°C were applied to dry paddy from various initial moisture contents to the range of 14–25%, dry basis without significant change in quality. Thermal energy consumption, in the range of 3.1–3.8 MJ/kg water, is comparable with other commercial dryers.  相似文献   

10.
《Drying Technology》2013,31(8):1673-1689
ABSTRACT

The performance and operating characteristics of a low temperature re-circulating cabinet dryer using a dehumidifier loop were studied using alfalfa. Chopped alfalfa, initially at 70% moisture content, was dried to 10% moisture content in the dryer. Two dryer setups were used. The dryers in each case had a partitioned cabinet with trays of material on one side and a stack of one or two small household dehumidifiers on the other side. Air was re-circulated through the material from bottom to the top and back through the dehumidifiers. Two drying configurations were tested. In one, the material was left on the trays until drying was complete (batch or fixed tray drying). In the other configuration, the trays were moved from top to bottom, introducing a new tray at the top while removing an old tray from bottom. Drying air temperature ranged from 25 to 45°C. The average air velocity through the material was 0.38 m/s. Alfalfa chops dried in 5 h in the fixed tray drying and in 4 h in the moving tray drying. The specific moisture extraction rate ranged from 0.35 to 1.02 kg/kWh for batch drying and stayed at an average value of 0.50 kg/kWh for continuous/moving tray drying.  相似文献   

11.
Saffron is the most expensive spice and Iran is the largest producer of this crop in the world. Saffron quality is profoundly affected by the drying method. Recent research has shown that hybrid photovoltaic–thermal solar power systems are more efficient in comparison with individual photovoltaic and thermal systems. In addition, heat pump dryers are highly energy efficient. Furthermore, they are suitable for heat-sensitive crops such as saffron. Therefore, in the present study, the performance of a hybrid photovoltaic–thermal solar dryer equipped with a heat pump system was considered for saffron drying, in order to obtain a high-quality product and reduce fossil fuel consumption. The effect of air mass flow rate at three levels (0.008, 0.012, and 0.016 kg/s), drying air temperature at three levels (40, 50, and 60°C), and two different dryer modes (with and without the heat pump unit) on the operating parameters of the dryer was investigated. The results of the investigation showed that total drying time and energy consumption decreased as air flow rate and drying air temperature increased. Applying a heat pump with the dryer led to a reduction in the drying time and energy consumption and an increase in electrical efficiency of the solar collector. The average total energy consumption was reduced by 33% when the dryer was equipped with a heat pump. Maximum values for electrical and thermal efficiency of the solar collector were found to be 10.8 and 28%, respectively. A maximum dryer efficiency of 72% and maximum specific moisture extraction rate (SMER) of 1.16 were obtained at an air flow rate of 0.016 kg/s and air temperature of 60°C when using the heat pump.  相似文献   

12.
Computational Fluid Dynamics (CFD) was applied three-dimensionally to simulate the drying behavior of paddy in a deep-bed dryer. The commercial CFD software Fluent 6.3.26 was used. The deep-bed paddy drying process and performance were studied by incorporating user-defined function (UDF) in Fluent written in C language. The predicted drying parameters were compared with experimental data of deep-bed drying of paddy. The values of mean relative deviation (MRD), standard error of prediction (SEP), and maximum error of prediction (MEP) for prediction of grain moisture content, air temperature, and absolute humidity were less than 6, 10, and 9%; 0.33% (d.b), 1.24°C, and 0.06% (kg/kg of dry air); and 2.25% (d.b), 6.8°C, and 0.37% (kg/kg of dry air), respectively, which reflect reasonable accuracy. Moreover, the energetic and exergetic performance of deep-bed paddy drying were simulated and analyzed. The effects of inlet air temperature and mass flow rate on the performance parameters were investigated. It was shown that the application of higher levels of inlet air temperature and lower mass flow rates yielded higher exergy efficiencies of deep-bed paddy drying.  相似文献   

13.
《Drying Technology》2013,31(8):1891-1908
The objectives of this research were to design, construct and test a prototype of vibro-fluidized bed paddy dryer with a capacity of 2.5–5.0 t/h and develop a mathematical model that determines optimum operating parameters. Experimental drying conditions were: air flow rate, 1.7 m3/s; bed velocity, 1.4 m/s; average drying air temperature, 125–140°C; residence time of paddy approximately 1 minute; bed height, 11.5 cm; fraction of air recycled, 0.85 and vibration of intensity, 1 (frequency, 7.3 Hz and amplitude, 5 mm). Moisture content of paddy with a feed rate of 4821 kg/h was reduced from 28 to 23% d.b. Specific primary energy consumption (SPEC) was 6.15 MJ/kg-water evaporated. Electrical power of blower motor and vibration motor was 55% as compared to electrical power of blower motor used in fluidized bed drying without vibration. Comparison between the experimental and simulated results showed that the mathematical model could predict fairly well. To find out optimum operating parameters, the grid search method was employed with criteria based on acceptable moisture reduction and quality and minimum energy consumption.

  相似文献   

14.
This research aims at modeling the rotary drying of carton packaging waste and analyzing the energy performance of the process. Drying data were obtained in a semi-pilot rotary dryer, 0.45 m diameter and 2.7 m rotating drum long, operating with an air velocity of 1 m/s and air inlet temperature of 90°C and 10 rpm. Under the operating conditions employed, the analysis of the data showed that the energy performance of the drying process increased from 5 to 75% as the inlet wet solid feed rate increased from 1.8 to 19 kg/h. In addition, at this latter wet-solid feed rate, the reduction of the air velocity in the dryer to 0.8 m/s also led to an increase in the performance of drying process from 80 to 94%. Furthermore, with a 95% confidence interval, the model used was adequate to predict the air and solid temperature as well as the air humidity and the solids moisture content.  相似文献   

15.
ABSTRACT

This paper describes a strategy for reducing moisture in paddy by fluidized bed drying, tempering and ambient air cooling. Experimental results showed that after the three processes, moisture content was reduced from 33 % to 16.5 % dry-basis within approximately 53 minutes. During the first process, a fluidized-bed dryer was used to reduce the moisture content of paddy down to 19.5 % dry-basis within 3 minutes. Then the paddy was tempered for 30 minutes. Finally, it was cooled by ambient air (temperature and relative humidity of 30 °C and 55-60% respectively) with air velocity of 0.15 m/s for 20 minutes. Quality of paddy in terms of head rice yield and whiteness was acceptable.  相似文献   

16.
V-type amylose–lipid complexes present in partially parboiled rice can decrease starch digestibility. Formation of such complexes can be accomplished using high-temperature fluidized bed drying; the degree of the complexes depends on the thermal condition. The effects of drying media (hot air and humidified hot air), operating conditions (drying air temperature and relative humidity [RH]), and the initial moisture content on the degree of V-type crystallinity and subsequent starch digestibility (or glycemic index, GI) and brown rice texture were examined experimentally. The results showed that paddy drying with humidified hot air (HHA) requires a longer time than hot air (HA). Higher drying air temperature, RH, and initial moisture content of paddy yield higher degrees of starch gelatinization and V-type amylose–lipid complexes. The brown rice dried by HA or HHA had lower starch digestibility and a harder texture than the reference sample. Within the range of parameters studied, to obtain the lowest GI for the dried brown rice, paddy at an initial moisture content of 33% (db) should be dried by HHA at 150°C and 6.4% RH.  相似文献   

17.
This article presents experimental and simulated results of drying of peeled longan in a side-loading solar tunnel dryer. This new type of solar tunnel dryer consists of a flat-plate solar air heater and a drying unit with a provision for loading and unloading from windows at one side of the dryer. These are connected in series and covered with glass plates. A DC fan driven by a 15-W solar cell module supplies hot air in the drying system. To investigate the experimental performance, five full-scale experimental runs were conducted and 100 kg of peeled longan was dried in each experimental run. The drying air temperature varied from 32 to 76°C. The drying time in the solar tunnel dryer was 16 h to dry peeled longan from an initial moisture content of 84% (w.b.) to a final moisture content of 12% (w.b.), whereas it required 16 h of natural sun drying under similar conditions to reach a moisture content of 40% (w.b.). The quality of solar-dried product was also good in comparison to the high-quality product in markets in terms of color, taste, and flavor. A system of partial differential equations describing heat and moisture transfer during drying of peeled longan in this solar tunnel dryer was developed and this system of nonlinear partial differential equations was solved numerically by the finite difference method. The numerical solution was programmed in Compaq Visual FORTRAN version 6.5. The simulated results agreed well with the experimental data for solar drying. This model can be used to provide the design data and it is essential for optimal design of the dryer.  相似文献   

18.
The dryer is required for drying of grain as well as drying of the processed products in small catchment agro processing centers in the developing world. However, due to varied material characteristics of grain and secondary processed product, two entirely different types of dryers are required. The grain is dried in a recirculatory dryer, whereas processed product is dried in a tray dryer, where it is frequently mixed and trays are also intermittently changed. To avoid the need for two dryers, a novel design of a low-cost hot air dryer was developed where just by changing the trays the dryer can be converted from an LSU grain dryer to a tray-type product dryer. The dryer was tested for drying soybean grain as well as processed soy products like blanched soybean dal and soyflakes. The capacity of the dryer was 100 kg/batch in a tray dryer with each tray accommodating 10 kg of wet material. In case of LSU mode, the capacity of the dryer was 250 kg of grain per batch. The drying time required was 5 h for 250 kg of wet soybean from 24 to 10% moisture content, whereas in a tray dryer 100 kg blanched soybean dal was dried from 60 to 10% in 5 h and 100 kg of soyflakes from 25% moisture content to 10% moisture in 1.75 h. The cost of the dryer is estimated at US$580.00 and it can be fabricated in a moderately equipped workshop in developing countries.  相似文献   

19.
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s?1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm?2 at an air velocity of 0.5 m/s?1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20–4.52 × 10?11 m2 s?1 and 3.04–4.79 × 10?11 m2/s?1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

20.
Intermittent drying of paddy rice is fully investigated both theoretically and experimentally. A model is developed to describe simultaneous heat and mass transfer for the drying stages and mass transfer for the tempering ones. The model is considered for both cylindrical and spherical geometries. The model excels in considering non-constant paddy rice and air physical properties as well as surface vaporization and convection. The consequent equations are numerically solved with finite-difference method of line using implicit Runge–Kutta. Furthermore, a set of experiments is conducted in a laboratory-scale fluidized bed dryer to estimate the moisture diffusivity of rice and evaluate the effects of different parameters. Two correlations for moisture diffusivity are derived for each geometry based on the experimental results. It is noteworthy that the geometry choice leads to significantly different moisture diffusivities. As a result, the diffusivity values obtained for spherical presentation is 2.64 times greater than that of cylinder. Moreover, the cylindrical model fits the experimental results more precisely, especially for tempering stage (AARDcyl = 1.03%; AARDsph = 1.53%). Model results reveal that thermal equilibrium is quickly reached within the first 2 min. Air velocity shows no influential effect on drying upon establishment of fluidized condition. In addition, drying rate is drastically improved after applying the tempering stage. A definition for tempering stage efficiency is also proposed which shows that 3 h tempering will be 80% efficient for the studied case. Rising temperature significantly improves the drying rate, while it does not contribute much in the tempering efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号