首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diesel oil was used as adsorbate, while corn stalk, wheat straw and sawdust were used as natural sorbents for adsorbing and absorbing pure oil and oil in water. The results showed that all three agricultural wastes absorbed diesel. The corresponding saturated sorption amounts of wheat straw, corn stalk and sawdust were 8.54 g g–1, 7.03 g g–1 and 8.2 g g–1. The optimum conditions found were: corn stalk particle size between 830 and 1700 μm, oscillation frequency of 0 r min–1, i.e., no wave movement, oil film thickness of 0.55 mm and adsorbent dosage of 0.29 g; sawdust particle size between 830 and 1700 μm, oscillation frequency of 0 r min–1, oil film thickness of 0.55 mm and adsorbent dosage of 0.25 g; wheat straw particle size between 500 and 830 μm, oscillation frequency of 0 r min–1, oil film thickness of 0.55 mm and adsorbent dosage of 0.24 g.  相似文献   

2.
Suxuan Xu 《Drying Technology》2013,31(13):1422-1431
A continuous vacuum drying method was used to develop low-fat tortilla chips with good sensory properties. To better understand the process, drying models were developed to determine the effects of drying thickness and temperature on drying rate. Drying rates were determined at three conduction plate temperatures (80, 90, and 100°C) and three product thicknesses (0.8, 1.5, and 2.3 mm). An effective diffusion model and semi-empirical models were used to fit the data. In addition, a model was developed from the drying rate curves that incorporated a drying coefficient [k(t)] that varied with time and could be described by a two-term Lorentzian model. All models had good agreement between experimental data and predicted data, with R 2 > 0.98. With consideration of other goodness-of-fit indicators (sum of squared errors [SSE] and χ2), the Page and variable coefficient models provided the best fit. The average effective moisture diffusivity was calculated using nonlinear regression and ranged from D eff = 1.19 to 1.54 × 10?9 m2/s. D eff increased with temperature and was described by an Arrhenius equation with E a  = 14.1 kJ/mol.

Continuous vacuum drying of a presteamed corn dough can be used to produce low-fat tortilla chips with high crispness and acceptable sensory properties. The drying rate models presented in this study will help predict appropriate drying times, optimize process conditions, and better understand the mechanisms of drying.  相似文献   

3.
4.
The effect of superheated steam (SS) drying and hot air (HA) drying on drying kinetics and changes in the color, crude protein, and amino acid concentrations (in particular, lysine content) of corn/wheat wet distillers grains (WDG) and centrifuged solubles (CS) was evaluated. An inversion temperature was reached at 139°C for WDG and 132°C for CS, above which moisture evaporation rate and qualitative changes under SS drying conditions exceeded the values noted in HA, and below which the reverse was observed. A significant decrease (from 8 to 50%) in the lysine content of WDG and CS was reported during SS and HA. The overall changes in the color (ΔE*) of corn/wheat WDG and CS ranged from 7.9 ± 2.6 to 27.2 ± 1.9 during SS drying and from 11.9 ± 3.7 to 32.0 ± 0.5 during HA drying. The observed deterioration in color was attributed mainly to changes in lightness (L*) and yellowness (b*) of dried samples. The values of L* and b* were reliable predictors of the lysine content of corn/wheat distillers co-products.  相似文献   

5.
Tectona grandis and Gmelina arborea are common in commercial reforestation in the tropics. However, color variations, moisture content, and drying defects are also present in dried lumber. Moisture content variations, drying defects, and color changes were evaluated in the present work for three drying methods (kiln, solar, and air drying) during three seasons (dry, rainy, and transition season) in Costa Rica. According to the results, kiln drying had the fastest drying times, regardless of the season. On the other hand, air drying had slower drying time and higher final moisture content. With regard to defects, kiln drying produced the highest number and magnitude of defects in both species, whereas air drying showed the lowest quantity and severity of defects. No variations due to the drying methods or the season were observed in check and split, though solar drying presented intermediate values in all drying defects. The seasons of the year did not present any effect on drying defects. Finally, T. grandis dried lumber is darker than green lumber, and dried G. arborea wood is clearer. In addition, there is an increase in red ( a * ) and yellow ( L * ) tonalities, and color changes (Δ E * ) are considered perceptible or very perceptible in both species. No differences were found among the three drying methods in Δ E * , although the season of the year affected dif L * and dif C * significantly.  相似文献   

6.
Drying behavior of green apples in a laboratory dryer was examined. Prior to drying, the apples were cut in 8 mm thick slices, which were then treated with citric acid solution and blanched hot water at 80°C. Next, they were dried at 65°C with an air velocity of 2.0 m/s. The shortest drying time (270 min) was obtained with apples pretreated with citric acid solution. The drying data were fitted with 11 mathematical models available in the literature. Selection of the best model was investigated by comparing the determination of coefficient (R 2), reduced chi-square (χ2), root means square error ( RMSE ), and mean relative percentage error (P) between the experimental and predicted values. The results showed that the Wang and Singh, logarithmic, and Verma et al. models gave the best results in describing thin-layer drying of apple slices. The effective moisture diffusivity of pretreated samples with citric acid solution was higher than the other samples.  相似文献   

7.
Liquorice root (LR) (Glycyrrize glabra) is known as a sweetener and medicine plant. Drying kinetics of LR with initial moisture content of 49.5% (wet basis (w.b)) were experimentally investigated in a microwave drying system. The drying experiments were carried out at different drying temperatures (40, 45, 50, and 55°C) and microwave power levels (250, 500 and 750 W). Several models from literature were selected to fit the experimental data. The fit quality of models was evaluated using the coefficient of determination (R2), sum square error (SSE), and root mean square error (RMSE). A new model has been proposed for LR drying in the microwave drying. This new model best describes the experimental data for LRs. The activation energy was calculated to be 46.807 kJ/mol and effective diffusivity ranged from 2.9 × 10?9 to 5.41 × 10?9 m2/s, depending on drying temperatures at constant microwave power level.  相似文献   

8.
This paper presents a novel type of dryer for experimentally evaluating the drying kinetics of seeded grapes. In the developed drying system, it has been particularly included an expanded-surface solar air collector, a solar air collector with phase-change material (PCM) and drying room with swirl element. An expanded-surface solar air collector has been used to achieve high heat transfer and turbulence effect whiles a solar air collector with PCM has been used to perform the drying process even after the sunset. On the other hand, the swirl elements have been located to give the swirl effect to air flow in drying room. These advantages make the proposed novel system a promising dryer in that lower moisture value and less drying time. The drying experiments have been carried out simultaneously both under natural conditions and by the dryer with swirl flow and without swirl flow at three different air velocities. The obtained moisture ratio values have been applied to six different moisture ratio models in the literature. The model having the highest correlation coefficient (R) and the lowest Chi-square (χ2) value has been determined as the most relevant one for each seeded grape drying status.  相似文献   

9.
Abstract

A conveyor-belt dryer for picrite has been modeled mathematically in this work. The necessary parameters for the system of equations were obtained from regression analysis of thin-layer drying data. The convective drying experiments were carried out at temperatures of 40, 60, 80, and 100°C and air velocities of 0.5 and 1.5 m/sec. To analyze the drying behavior, the drying curves were fitted to different semi-theoretical drying kinetics models such as those of Lewis, Page, Henderson and Pabis, Wang and Singh, and the decay models. The decay function (for second order reactions) gives better results and describes the thin layer drying curves quite well. The effective diffusivity was also determined from the integrated Fick's second law equation and correlated with temperature using an Arrhenius-type model. External heat and mass transfer coefficients were refitted to the empirical correlation using dimensionless numbers (J h , J D  = m · Re n ) and their new coefficients were optimized as a function of temperature. The internal mass transfer coefficient was also correlated as a function of moisture content, air temperature, and velocity.  相似文献   

10.

The withering characteristics of tea leaves were examined for different temperatures. Tea leaves were withered at a temperature range of 20–45°C with a constant air velocity of 1.1 m/s. The experimental results illustrated the absence of constant-rate drying period and withering took place only in the falling-rate period. During the falling-rate period, at constant drying air flow rate, the drying rate increased and drying time decreased with the increase in drying air temperature. Drying models of Henderson and Pabis and Page were evaluated based on mean bias error (EMB), root mean square error (ERMS), correlation coefficient (R2), and the chi square (χ2). The Henderson and Pabis model was found to be a better model for describing the withering characteristics of tea leaves for each of the temperatures of 20, 25, 30, and 35°C. The values obtained from Page model were found to be more reasonable for temperatures of 40 and 45°C than the other model. Both the models closely fitted the withering data within a certain range of temperature. The Henderson and Pabis model gave better prediction and satisfactorily described the withering characteristics of tea leaves at temperatures lower than 40°C whereas the Page model fitted well at temperatures greater than 40°C.  相似文献   

11.
Experimental investigation on drying of ragi (Eleusine corocana) in a fluidized bed has been attempted covering the operating parameters such as temperature, flow rate of the drying medium, and solids holdup. The drying rate was found to increase significantly with increase in temperature and marginally with flow rate of the heating medium and to decrease with increase in solids holdup. The duration of constant rate period was found to be insignificant, considering the total duration of drying and the entire drying period was considered to follow falling rate period. The drying rate was compared with various simple exponential time decay models and the model parameters were evaluated. The Page model was found to match the experimental data very closely with the maximum root mean square of error (RMSE) less than 2.5%. The experimental data were also modeled using Fick's diffusion equation and the effective diffusivity coefficients were estimated. The effective diffusion coefficient was found to be within 5.7 to 14 × 10?11 m2/s for the range of experimental data covered in the present study with RMSE less than 5%.  相似文献   

12.
The characteristics of transverse relaxation time (T2) of water in wheat were studied by measuring the relaxation time of low-field nuclear magnetic resonance. Analysis of the exponential distribution of T2 revealed that wheat contains five water components. The T2 relaxation time and distribution significantly changed during drying. The dynamic characteristics of five water components during wheat drying were determined using the signal quantity of their characteristic peaks, which showed different features. Weakly chemically bound water (T22) and water ascribed to cell wall (T23) were the main source of water loss. Moreover, most T23 and extracellular water (T24) were removed during drying. Water migration between strongly chemically bound water (T21) and the other water components was bidirectional. This process was not only affected by temperature but also by wheat moisture content and proportion of the five water components. The start time of water migration advanced and growth rate of T21 at the end of drying to that before drying increased at 60, 70, and 80°C. Drying at varied temperatures should be applied according to the characteristics of five water components during the drying process. In addition, high initial temperature was found to be necessary to achieve high drying rate of T23, T24, and free water (T25). The use of drying temperature of 80°C at the early stage and then changing to 70°C reduced the heat consumption by 4.81% and increased the drying time by 9.61%.  相似文献   

13.
This study aimed at investigating thin-layer drying characteristics of sludge mixed with different rice straw contents (1, 2, 3, and 5% wb). The experimental results showed that adding 1, 2, and 3% (wb) rice straw to sludge is helpful to improve the drying rate of sludge as the surface area and cracks increase but the drying rate of the sludge mixed with 5% (wb) rice straw decreases with a reduction in thermal conductivity. When the content of rice straw is 2% (wb), the increased amplitude of drying rate is the highest, 14.6, 14.8, 16.0, and 17.6% at 100, 120, 140, and 160°C, respectively. The model proposed by this study showed better prediction compared with the other models and satisfactorily described the drying characteristics of sludge/rice straw mixture as well and is applicable under the given experimental conditions. The values of R2, root mean square error (RMSE), and χ2 varied from 0.99935 to 0.99992, 0.00295 to 0.00830, and 0.00001 to 0.00007, respectively.  相似文献   

14.
ABSTRACT

Simulation results for convective drying processes in cross-flow packed bed grain dryers are discussed in this article. A mathematical model developed in order to enable easier design of convective dryers and optimization of operating conditions for agricultural materials (wheat, corn, sunflower seed, etc.) is used in the study. On the basis of calculated values of the state variables of the gas phase and the solids, a clear image of the process itself can be obtained, as well as an overview of advantages and disadvantages of a specific design, supporting and facilitating decisions about the choice of dryer type and operating scheme. The case of double passing of drying agent, with and without additional heating, for a cross-flow continuous dryer, as well as the case of different materials processed in a series of cross-flow batch dryers, is analyzed.  相似文献   

15.
In this work, a four-section pulsed fluid bed apparatus with a 0.18 m2 cross-section area was used to investigate the influence of pulsed-fluidization variables on the drying process of molecular sieves, a test material that was chosen because it presents an initial constant drying rate period. A two-level factorial design was developed to evaluate the influences of the inlet gas temperature—40 and 70°C—the frequency of pulsation—250 and 900 rpm—and the air flow rate—500 and 600 m3(STP)/h—on the drying rate. In addition, a comparison was made between the drying rates achieved with conventional and pulsed fluidization. Results showed that all the investigated variables affect the drying rate. Moreover, drying rates with conventional fluidization are considerably higher, which shows that one must expect a lower drying rate when pulsation is used in a drying process controlled by the external evaporation. Concerning fluid dynamics, this work also analyzed the influence of the frequency of pulsation on the pressure drop across the bed. The higher the frequency, the higher the pressure drop. That result can be explained by the reduction of channeling.  相似文献   

16.
The aim of this research was to study and to model the drying kinetics of the brown algae Macrocystis pyrifera at 50, 60, 70, and 80°C. GAB equation showed a good fit on the sorption experimental data. Fick's diffusional model, together with Newton, Henderson-Pabis, Page, modified Page, logarithmic, and Midilli-Kukuc models were applied on the drying kinetics of the alga. The Dwe increased from 5.56 to 10.22 × 10?9 m2/s as temperature increased from 50 to 80°C. Midilli-Kukuc and logarithmic models obtained the best-fit quality for drying curves based on the statistical tests. In consequence, both models are excellent tools for estimating the drying time of this product.  相似文献   

17.
针对秸秆堆积储存和制粉过程中的自燃问题,采用杜瓦瓶自加热装置对稻草(RS)、麦秸(WS)、玉米秸秆(CS)堆积储存的自加热过程进行研究,并考察含水量对自加热的影响;同时,采用慢速升温的热重分析方法对3种秸秆的低温氧化特性进行研究.自加热实验结果显示:3种秸秆的自加热过程遵循相同的规律(均分为诱导期、温度上升期和温度下降...  相似文献   

18.
This article evaluates the effect of air drying, freeze drying, and 24-month storage at 4 and 20 ° C on unblanched and blanched Boletus edulis . Water content and activity were lower in freeze-dried mushrooms than in air-dried mushrooms, whereas rehydration capacity showed the opposite tendency. Drying resulted in substantial losses of the following antioxidants: total flavonoids (4–7%), vitamin C (2–36%), β-carotene (26–32%), and total tocopherols (72–81%); total polyphenols increased during air drying (7–17%) and decreased during freeze drying (5–7%). Antioxidant activity increased 1–33% during drying. Storage led to further changes in the quality of dried mushrooms. After 24 months, no vitamin C or tocopherols were detected, and water content and activity were moderately high.  相似文献   

19.
《Drying Technology》2013,31(4):637-647
Abstract

The drying of materials is often described by nonlinear diffusion equations. Up to now the only way to solve these equations is by numerical simulations. Recently an analytic solution has been proposed for the drying problem. Based on this solution a sharp drying front model is presented. Measured moisture profiles during drying and the drying curve of gypsum are compared with approximate models.  相似文献   

20.
Effect of dry salting (DS) and brine salting (BS) techniques on salt uptake and drying kinetics of African catfish (ACF) was investigated. Salt uptake kinetics during BS using the Peleg model at different salt concentrations (0.15–0.27 gNaCl/g) and salting temperatures (30–38 °C) was studied while the drying experiments took place at 60 °C and 1.5 m/s under forced convection. Salt uptake was affected by brine concentration, salting time and temperature during the BS technique but its diffusion among the treated samples was similar. Salt uptake was rapid at the initial salting time but decreases as the process progresses. The Peleg model predicted the salt uptake of ACF better than Zugarramurdi and Lupin model during BS based on high values of coefficient of determination (R2) of 0.930–0.999, very low Chi square (χ2) of 0.16–8.0 × 10−12 and low root mean square error (RMSE) of 0.97–13.93 × 10−2. The effective salt diffusivity was observed to vary between 1.1 and 9.72 × 10−7 m2/s. Significant differences in the drying pattern was not observed for both techniques but took place in the falling rate period, although drying rate was faster in DS samples. The Page and modified Page models based on high R2 (0.999), low χ2 (2 × 10−2) and low root mean square error of 1.05 × 10−4 predicted appropriately the drying kinetics of ACF irrespective of the technique used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号