首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article is concerned with the energy and exergy analyses of the continuous-convection drying of potato slices. The first and second laws of thermodynamics were used to calculate the energy and exergy. A semi-industrial continuous-band dryer has been designed and used for drying experiments. The equipment has a drying chamber of 2 m length and the inlet air used for drying is heated by gas power. The experiments were conducted on potato slices with thickness of 5 mm at three different air temperatures of 50, 60 and 70°C, drying air mass flow rates of 0.61, 1.22, and 1.83 kg/s and feeding rates of 2.31 × 10?4, 2.78 × 10?4, and 3.48 × 10?4 kg/s. The energy utilization and energy utilization ratio were found to vary between 3.75 and 24.04 kJ/s and 0.1513 and 0.3700, respectively. These values show that only a small proportion of the supplied energy by the heater was used for drying. The exergy loss and exergy efficiency were found to be in the range of 0.5987 to 13.71 kJ/s and 0.5713 to 0.9405, respectively, indicating that the drying process was thermodynamically inefficient and much energy was vented in the exhaust air. In addition, the results showed that the feeding rate and the temperature and flow rate of the drying air had an important effect on energy and exergy use. This knowledge will provide insights into the optimization of a continuous dryer and the operating parameters that causes reduction of energy consumption and losses in continuous drying.  相似文献   

2.
In this study, exergy and exergoeconomic analyses of a heat pump tumbler dryer are carried out by using actual thermodynamic and cost data. The wet cotton fabric is used as the test drying material. The results show that the specific moisture extraction rate (SMER) and evaporation rate of dryer are equal to 1.08 kg/kWh and 0.018 kg/s, respectively. Also, the respective exergetic efficiencies of the heat pump and overall system are equal to 0.07 and 0.11. A parametric study is then conducted in order to investigate the system performance and costs of the components, depending on the operating temperature and mass flow rate of air.  相似文献   

3.
Saffron is the most expensive spice and Iran is the largest producer of this crop in the world. Saffron quality is profoundly affected by the drying method. Recent research has shown that hybrid photovoltaic–thermal solar power systems are more efficient in comparison with individual photovoltaic and thermal systems. In addition, heat pump dryers are highly energy efficient. Furthermore, they are suitable for heat-sensitive crops such as saffron. Therefore, in the present study, the performance of a hybrid photovoltaic–thermal solar dryer equipped with a heat pump system was considered for saffron drying, in order to obtain a high-quality product and reduce fossil fuel consumption. The effect of air mass flow rate at three levels (0.008, 0.012, and 0.016 kg/s), drying air temperature at three levels (40, 50, and 60°C), and two different dryer modes (with and without the heat pump unit) on the operating parameters of the dryer was investigated. The results of the investigation showed that total drying time and energy consumption decreased as air flow rate and drying air temperature increased. Applying a heat pump with the dryer led to a reduction in the drying time and energy consumption and an increase in electrical efficiency of the solar collector. The average total energy consumption was reduced by 33% when the dryer was equipped with a heat pump. Maximum values for electrical and thermal efficiency of the solar collector were found to be 10.8 and 28%, respectively. A maximum dryer efficiency of 72% and maximum specific moisture extraction rate (SMER) of 1.16 were obtained at an air flow rate of 0.016 kg/s and air temperature of 60°C when using the heat pump.  相似文献   

4.
Simulation of the heat pump cycle and the drying process has been carried out to obtain the design parameters of the dryer. The analysis indicates that a specific moisture extraction rate (SMER) greater than 3.4 kg/kWh can be obtained. A box-type heat pump dryer has been developed and investigated for the performance of drying of shredded radish. Heat pump drying took 1.0–1.5 times longer than hot air drying. However, the heat pump dryer showed considerable improvement in energy savings. The SMER of the heat pump dryer was about three times higher than that of the hot air dryer.  相似文献   

5.
Exergoeconomic analysis has been used as a powerful tool to study and optimize various types of energy-related systems. In this study, we use the specific exergy cost (SPECO) method to calculate exergy-related parameters and display cost flows for all streams and components in a gas engine–driven heat pump drying system based on the experimental data. We analyze and evaluate the performance of the drying system components and the drying process for three different medicinal and aromatic plants from an exergoeconomic point of view. We also investigate the effect of varying dead (reference) state temperatures on exergoeconomic performance parameters for the drying system components and drying process. Although the condenser and drying chamber of the gas engine–driven heat pump dryer were significantly affected by the ambient temperature, the gas engine was slightly influenced by the ambient temperature. At low ambient temperatures, the exergy rates increased and the most effective performance obtained from this dryer was at 0°C. The performance of the drying process also increased at low ambient temperatures. This study demonstrated that exergoeconomic analysis can provide more information than exergy analysis, and the results obtained from the exergoeconomic analysis provided cost-based information, suggesting potential locations for drying system improvement.  相似文献   

6.
Recently, the interest in olive leaf has increased due to its high phenolic content. It has a high potential for industrial exploitation in food industry and the main process in olive leaf treatment is drying. Drying affects the product quality and is an energy-intensive process, so the use of heat pumps in drying processes that have low operating cost has attracted the attention of the investigators. In this study, response surface methodology was used to optimize operating conditions of drying of olive leaves in a pilot-scale heat pump conveyor dryer. The independent variables were air temperature, air velocity, and process time, and the responses were total phenolic content and antioxidant activity loss, final moisture content, and exergetic efficiency. Optimum operating conditions were found to be temperature of 53.43°C, air velocity of 0.64 m/s, process time of 288.32 min. At this optimum point, total phenolic content loss, total antioxidant activity loss, final moisture content, and exergetic efficiency were found to be 9.77%, 44.25%, 6.0% (w.b.), and 69.55%, respectively.  相似文献   

7.
This research aims at modeling the rotary drying of carton packaging waste and analyzing the energy performance of the process. Drying data were obtained in a semi-pilot rotary dryer, 0.45 m diameter and 2.7 m rotating drum long, operating with an air velocity of 1 m/s and air inlet temperature of 90°C and 10 rpm. Under the operating conditions employed, the analysis of the data showed that the energy performance of the drying process increased from 5 to 75% as the inlet wet solid feed rate increased from 1.8 to 19 kg/h. In addition, at this latter wet-solid feed rate, the reduction of the air velocity in the dryer to 0.8 m/s also led to an increase in the performance of drying process from 80 to 94%. Furthermore, with a 95% confidence interval, the model used was adequate to predict the air and solid temperature as well as the air humidity and the solids moisture content.  相似文献   

8.
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s?1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm?2 at an air velocity of 0.5 m/s?1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20–4.52 × 10?11 m2 s?1 and 3.04–4.79 × 10?11 m2/s?1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

9.
Exergy analysis has been used as a powerful tool to study and optimize various types of energy systems. However, the methodology of splitting the exergy destructions (the so-called advanced exergy analysis) allows for a further understanding of the exergy destruction values to improve the system efficiency. In this study, advanced exergy analysis was applied to a pilot-scale heat pump drying system used in food drying for the first time to evaluate its performance at different drying temperatures. The results showed that inefficiencies within the compressor and condenser were mainly due to the internal operating conditions and the efficiencies in the evaporator and heat recovery system could be improved by structural improvements of the whole system and remaining system components.  相似文献   

10.
《Drying Technology》2013,31(8):1559-1577
ABSTRACT

The ability of heat pump dryer to produce controlled transient drying conditions, in terms of temperature, humidity and air velocity, has given it an edge over other drying systems. Exploiting this characteristic, we studied and compared the effect of different temperature-time profiles on the quality of agricultural products in a tunnel heat pump dryer capable of providing up to 14.6 kW of cooling capacity. The product quality refers to the color change of the products. Samples of banana and guava were dried in batches in a two-stage heat pump dryer. The effects of the starting temperature of a selected profile and the cycle time on both drying kinetics and product quality were studied. It was observed that by employing a step change in drying air temperature with the appropriate starting temperature and cycle time, it was possible to reduce significantly the drying time to reach the desired moisture content with improved product color.  相似文献   

11.
Abstract

In this study, an air recirculating pilot-scale convective dryer operating at various exhaust air recycle fractions was exergetically investigated in detail. Two drying air temperatures (55–70?°C), two air volume flow rates (360–450?m3/h), and six exhaust air recycle fractions (0–100%) were considered for drying of poplar wood chips. The effects of drying variables were studied on the exergetic efficiencies of drying system and drying chamber. The total exergy of air exhausting from drying chamber was also fractionated into thermophysical and wet exergies for further evaluating the effect of recycle fraction. The universal exergetic efficiency of drying chamber ranged from 41.84% to 98.07%, while the average overall functional exergetic efficiency of drying system varied from 1.32% to 4.01%. Exhaust air recirculation profoundly improved the overall functional exergetic efficiency of drying system as a decision-making parameter up to over two times. Although the recycle fraction of 100% showed the highest improvement in the overall functional exergetic efficiency of drying system, the drying time drastically increased at this condition as expected. Overall, a compromise should be made between drying time and exergetic improvement in order to select a proper recycle fraction for recovering exergy from outflow air.  相似文献   

12.
The main objective is studying the fundamental aspect, by means of drying kinetics and the application of forced convective drying of wastewater sludge with the determination of the optimum drying conditions. The drying system is composed of two units; small samples of 2.5 g are dried in the first unit and a bed of sludge weighing 250 g is dried in the second unit. The experiments are performed under air temperatures varying between 80°C and 200°C. The range of the air velocity and its humidity is 1–2 m/s and 0.005–0.05 kgwater/kgdry air, respectively. The experiments are performed for two different sludges: activated sludge (AS) and thermalized and digested sludge (TDS). Usually, three main drying phases are observed during drying of bed of sludge. These phases are reduced to only two for small samples. Determination of the influent parameters shows that the temperature of the drying air and sludge origin can profoundly influence the drying kinetic of the sludge. The exergy analysis of the two units of the drying system allows selecting 140°C, 2 m/s, and 0.05 kgwater/kgdry air as optimum drying conditions with an exergy efficiency reaching 90%.  相似文献   

13.
Thin-layer drying experiments under controlled conditions were conducted for green sweet pepper in heat pump dryer at 30, 35, and 40°C and hot air dryer at 45°C with relative humidities ranging from 19 to 55%. The moisture content of sweet pepper slices reduced exponentially with drying time. As the temperature increased, the drying curve exhibited a steeper slope, thus exhibiting an increase in drying rate. Drying of green sweet pepper took place mainly under the falling-rate period. The Page equation was found to be better than the Lewis equation to describe the thin-layer drying of green sweet pepper with higher coefficient of determination and lower root mean square error. Drying in heat pump dryer at 40°C took less time with higher drying rate and specific moisture extraction rate as compared to hot air drying at 45°C due to lower relative humidity of the drying air in a heat pump dryer though the drying air temperature was less. The retention of total chlorophyll content and ascorbic acid content was observed to be more in heat pump–dried samples with higher rehydration ratios and sensory scores. The quality parameters showed a declining trend with increase in drying air temperature from 30 to 45°C. Keeping in view the energy consumption and quality attributes of dehydrated products, it is proposed to dry green sweet pepper at 35°C in heat pump dryer.  相似文献   

14.
The objective of the present work is to find the possibility of reducing the high initial moisture content of wet paddy using a small-scale, low-cost pneumatic conveying dryer that can be provided for each farming household. The dryer without a cyclone equipped at the exit of the dryer is studied and the data obtained from this system is compared with those obtained previously from the dryer with a cyclone. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, and drying air temperature from 35 to 70°C. From the experimental results it is found that the drying process with and without a cyclone are able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. For the same experimental conditions, the cyclone-equipped dryer gives around 1% higher decrease of moisture content, 2°C higher average surface temperature of paddy, 3–4% higher average percentage of head rice yield, and 2 kg/h higher average evaporation rate. However, the energy consumption per evaporated mass of water is 20–30% lower than the non-cyclone-equipped dryer.  相似文献   

15.
《Drying Technology》2013,31(7):1369-1381
Abstract

Freshly harvested rosehips (Rosa canina L.) were dehydrated in a parallel flow type air dryer at six air temperatures (30, 40, 50, 60, and 70°C) at air velocities of 0.5, 1.0, and 1.5 m/s. Drying air temperature and velocity significantly influenced drying time and energy requirement. Minimum and maximum energy requirement for drying of rosehips were determined as 6.69 kWh/kg for 70°C at 0.5 m/s, and 42.46 kWh/kg for 50°C, 1.5 m/s. In order to reduce drying energy consumption, it is recommended that the drying air velocity must not be more than 0.5 m/s and drying air temperature should be 70°C. In addition, the influence of drying air temperature and air velocity on the color of dried rosehip has been studied. Hunter L, a, b values were used to evaluate changes in the total color difference (ΔE) on dried rosehips. 70°C drying air temperature and 1 m/s air velocity were found to yield better quality product.  相似文献   

16.
Mature ginger was pretreated by soaking in citric acid prior to drying in a single layer in a tray and heat pump dehumidified dryer at three temperatures of 40, 50, and 60°C and in a mixed-mode solar dryer at 62.82°C and a radiation intensity of 678 W/m2. The drying data were applied to the modified Page model. Diffusivities were also determined using the drying data. Quality evaluation by color values, reabsorption, and 6-gingerol content showed best quality for ginger with no predrying treatment and dried at 40°C in a heat pump–dehumidified dryer. At drying temperature of 60 to 62.82°C, no pretreated dried ginger from mixed-mode solar dryer provided the shortest drying time and retained 6-gingerol as high as heat pump–dehumidified dryer.  相似文献   

17.
Drying is one of the most common methods for processing and preserving squids. A novel forced convective dryer based on infrared heating was developed with an online temperature control. By setting the drying medium temperature of 50°C, we studied the effects of infrared wavelength and air velocity on drying characteristics of the shredded squid and qualities of dried squid products. We also compared it with the conventional hot-air drying (HAD) and advanced microwave vacuum drying (MVD). The infrared heating rate increase was faster than that of HAD. The heating and drying at the wavelength of 2.5–3.0 µm were more effective than those at the infrared wavelength of 5.0–6.0 µm. Specific energy consumption linearly increased with the air velocity. Microstructure observation showed that the infrared-dried rehydrated sample displayed a muscle fiber structure similar to the fresh sample. The infrared-dried squids had less drying shrinkage, brighter color, and better rehydration capacity than HAD products. Their sensory qualities were better than HAD and MVD products. Above all, infrared drying with wavelength of 2.5–3.0 µm and air velocity of 0.5 m/s was suggested as the best drying condition for squids in this study.  相似文献   

18.
In this study, the effects of exhaust air humidity ratio, the residual moisture content of fabric outlet, and the temperature of the drying air on the exergy destruction and efficiency of stenters were investigated. The exergy efficiencies of the direct gas heated stenter (DGHS) and hot oil heated stenter (HOHS) were calculated to be varying from 8.5 to 17.5% and from 6.8 to 14.0%, depending on the exhaust air humidity ratio, respectively. The increase in the drying air temperature led to an increase in the exergy efficiency, especially in the constant rate and second rate period of the drying. On the other hand, the application of the gradual temperature method caused the highest total exergy efficiency due to the highest drying rates in the first chambers where considerably high air temperatures were set. Overdrying resulted in the higher irreversibility due to the increase in the fuel consumption in the falling rate period of drying. Thus, the exergy efficiency decreased drastically.  相似文献   

19.
《Drying Technology》2013,31(7):1603-1620
Abstract

Drying kinetics of tomato was studied by using heat pump dryer (HPD) and electric resistance dryers with parallel and crossed airflow. The performance of both systems was evaluated and compared and the influence of temperature, air velocity, and tomato type on the drying kinetics was analyzed. The use of HPD showed to be adequate in the drying process of tomatoes, mainly in relation to the conversion rate of electric energy into thermal energy. The heat pump effective coefficient of performance (COPHT,EF) was between 2.56 and 2.68, with an energy economy of about 40% when compared to the drying system with electric resistance. The Page model could be used to predict drying time of tomato and statistical analysis showed that the model parameters were mainly affected by drying temperature.  相似文献   

20.
Empty fruit bunch (EFB) is one of the solid wastes from crude palm oil mills and has the lowest value for utilization compared to other solid wastes. To achieve an efficient utilization of EFB, drying is considered the first crucial process due to the high moisture content of EFB. In this study, EFB drying based on exergy recovery is proposed to achieve high energy efficiency. A fluidized bed is adopted as the main dryer. The proposed model is evaluated in terms of energy efficiency, especially regarding the influence of target moisture content and fluidization velocity. Up to 92% of the energy involved in the drying process can be recirculated. The total energy consumption for drying decreases as the target moisture content decreases, though there is no significant impact of fluidization velocity to total energy consumption. In addition, the required total length of the heat transfer tubes immersed inside the fluidized bed dryer is calculated because it relates to fluidization performance and economic issues. Lower target moisture content results in a longer heat transfer tube, and higher fluidization velocity leads to a shorter heat transfer tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号