首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Grape stalk is a by-product of the winemaking process with a high antioxidant content. Drying is a necessary stage before antioxidant extraction, which may affect not only kinetic and energy efficiency but also product quality. Coupling non-thermal technologies, such as power ultrasound, to convective drying is considered a strategy for process intensification in order to prevent certain drawbacks of conventional technologies. In this work, the use of power ultrasound in the convective drying of grape stalk was tested in order to estimate its influence on kinetic and energy efficiency. For this purpose, convective drying kinetics of grape stalk were carried out with and without power ultrasound application (21.8 kHz, at two ultrasonic power levels: 45 and 90 W). In addition, the inlet and outlet air temperatures of the drying chamber were monitored. The drying process was modeled considering heat and mass transfer phenomena jointly with the total energy consumption and the energy efficiency of the system. Power ultrasound application involved a shortening of grape stalk drying time, which was dependent on the drying air temperature (40 and 60°C) and the ultrasonic power applied (45 and 90 W). The modeling showed the increase in diffusion and convective heat transport phenomena produced by ultrasound application, despite grape stalk being a low-porosity product and, therefore, only slightly sensitive to ultrasonic effects. In addition, it was also highlighted that ultrasound application increased the energy efficiency during the drying of grape stalk.  相似文献   

2.
The application of power ultrasound could constitute a way of improving traditional convective drying systems. The different effects produced by the application of power ultrasound may influence the drying rate without provoking any significant increase in product temperature. Due to the fact that the effect of power ultrasound is product dependent, the aim of this work was to address the influence of the applied acoustic energy on the convective drying of carrot and lemon peel.

Convective drying kinetics of carrot cubes (side 8.5 mm) and lemon peel slabs (thickness 7 mm) were carried out at 40°C and 1 m/s by applying different levels of acoustic power density: 0, 4, 8, 12, 16, 21, 25, 29, 33, and 37 (kW/m3). The application of power ultrasound during drying was carried out using an airborne ultrasonic transducer (21.7 kHz). Drying kinetics were described considering a diffusion model.

In both products, the application of power ultrasound improved the effective moisture diffusivity (De ). The improvement was linearly proportional to the applied acoustic power density. In the case of lemon peel, the effects of power ultrasound were found over all the range tested (0–37 kW/m3), whereas in the case of carrot, it was necessary to apply an acoustic power density of over 8–12 kW/m3 to be able to observe the influence. The more intense effect of acoustic energy in lemon peel drying may be explained by the fact that lemon peel is a more porous product than carrot.  相似文献   

3.
A hybrid drying system for high-intensity airborne ultrasound applied in convective drying was investigated for the drying of salted codfish (clipfish). Convective drying with ultrasonic assistance at 10, 20, and 30°C was compared to the same process without ultrasound. The Weibull model was used to model and investigate the drying behavior, and the effective diffusion in Fick's law was determined. The ultrasound decreased the drying time more at lower drying temperatures. The drying time was reduced by over 90% at a drying temperature of 10°C. For an industrial drying process at a temperature of 20°C, the drying time was reduced by 32.2%. The ultrasonic, convective drying of clipfish at a temperature of 20°C was faster than the same process without ultrasound at 30°C. The investigations showed a thermal effect for all products when ultrasound was applied. The specific moisture extraction ratio (SMER) in the investigated system was improved by 0.2 kgwater kWh?1. The heat transfer coefficient in the system used was increased by 32.6% for a heating process in a separate investigation, whereas for a cooling process no increased heat transfer coefficient was determined. The thermal effect might (at least partially) explain the faster drying of ultrasonic-assisted convective drying. The results obtained demonstrate the potential of airborne ultrasound in convective drying with regard to drying time, energy consumption, and product quality. Documentation of the thermal effect should be included in future R&D on this topic.  相似文献   

4.
Due to the stratification of sludge particles in the ultrasonic field, the acoustic interaction forces the particles to agglomerate on a plane perpendicular to the direction of ultrasonic propagation. Therefore, the thickness of sludge can significantly influence the characteristics of ultrasound-assisted hot air convective drying municipal sewage sludge. In this paper, the stratified aggregation phenomenon of sludge with different thicknesses was observed in the ultrasonic field using the experimental method. It was found that the stratification of the internal structure of sludge became more obvious with the increase of its thickness. The effects of ultrasound on the drying time and the drying rate of sludge with various thicknesses were studied. Meanwhile, the effective moisture diffusivity (Deff) was analyzed. The experimental results demonstrated that the larger the sludge thickness, the longer the time length of the first falling rate stage and the promotion of the drying rate was worse when the ultrasonic power was less than 135 W. The situation was opposite at the constant rate stage. Among the sludge with the thicknesses of 5, 10, and 15 mm, the total drying time and energy consumption of the sludge with a thickness of 10 mm decreased the most substantially under the condition of ultrasonic power less than 90 W. The smaller the thickness of sludge is, the less obvious the effect of ultrasound on the effective moisture diffusivity, and vice versa.  相似文献   

5.
牟新竹  陈振乾 《化工学报》2020,71(z2):241-252
由于在超声波声场中污泥微粒会发生分层现象,声互作用力使得微粒于超声传播方向相垂直的平面上发生凝聚,因此污泥厚度大小对超声波辅助热风干燥污泥特性有着重要的影响。通过实验的方法,对不同厚度污泥在超声波声场中的分层凝聚现象进行观察,发现污泥内部结构的分层现象随其厚度的增加而明显。研究了超声波对不同厚度污泥干燥过程中各时期干燥时长、干燥速率的影响效果,以及分析了湿分有效扩散系数(Deff)随污泥厚度变化的情况。从实验结果中可以发现,在超声波功率小于135 W范围内,污泥厚度越大,干燥过程中第一降速期时间越长,干燥速率提升效果越差,而对恒速干燥期内干燥速率提升效果更明显;在5、10以及15 mm厚度的污泥中,10 mm厚度的污泥在超声波功率小于90 W的条件下总干燥时长降低幅度最大,干燥速率在各阶段提速也较快;污泥厚度越小,超声波功率对污泥湿分有效扩散系数影响越小,反之影响越大。  相似文献   

6.
Power ultrasound is considered to be a novel and promising technology with which to improve heat and mass transfer phenomena in drying processes. The aim of this work was to contribute to the knowledge of ultrasound application to air drying by addressing the influence of mass load density on the ultrasonically assisted air drying of carrot. Drying kinetics of carrot cubes were carried out (in triplicate) with or without power ultrasound application (75 W, 21.7 kHz) at 40°C, 1 m/s, and several mass load densities: 12, 24, 36, 42, 48, 60, 72, 84, 96, 108, and 120 kg/m3. The experimental results showed a significant (p < 0.05) influence of both factors, mass load density and power ultrasound application, on drying kinetics. As expected, the increase of mass load density did not affect the effective moisture diffusivity (De, m2/s) but produced a reduction of the mass transfer coefficient (k, kg water/m2/s). This was explained by considering perturbations in the air flow through the drying chamber thus creating preferential pathways and, as a consequence, increasing external mass transfer resistance. On the other hand, it was found that the power ultrasound application increased the mass transfer coefficient and the effective moisture diffusivity regardless of the mass load density used. However, the influence of power ultrasound was not significant at the highest mass load densities tested (108 and 120 kg/m3), which may be explained from the high ratio (acoustic energy/sample mass) found under those experimental conditions. Therefore, the application of ultrasound was considered as a useful technology with which to improve the convective drying, although its effects may be reduced at high mass load densities.  相似文献   

7.
《Drying Technology》2013,31(10):2331-2341
Abstract

Experimental results on microwave drying of the porous particles exposed to air stream at 40°C are presented. The temperature and moisture distribution inside a particle were measured for gypsum spheres of 9, 18, 28, and 38 mm. The mass reduction was monitored during the drying process. The rate of drying and changes in temperature and moisture profiles for different drying conditions were analyzed and compared with the ones for convective drying.  相似文献   

8.
The main objective is studying the fundamental aspect, by means of drying kinetics and the application of forced convective drying of wastewater sludge with the determination of the optimum drying conditions. The drying system is composed of two units; small samples of 2.5 g are dried in the first unit and a bed of sludge weighing 250 g is dried in the second unit. The experiments are performed under air temperatures varying between 80°C and 200°C. The range of the air velocity and its humidity is 1–2 m/s and 0.005–0.05 kgwater/kgdry air, respectively. The experiments are performed for two different sludges: activated sludge (AS) and thermalized and digested sludge (TDS). Usually, three main drying phases are observed during drying of bed of sludge. These phases are reduced to only two for small samples. Determination of the influent parameters shows that the temperature of the drying air and sludge origin can profoundly influence the drying kinetic of the sludge. The exergy analysis of the two units of the drying system allows selecting 140°C, 2 m/s, and 0.05 kgwater/kgdry air as optimum drying conditions with an exergy efficiency reaching 90%.  相似文献   

9.
《Drying Technology》2013,31(8):1869-1895
Abstract

The use of a fluidized bed dryer with a lateral air flow and mechanical agitation to the drying of sludge from a wastewater treatment plant was investigated. Experimental curves of moisture content vs. drying time, as well as heat transfer coefficients and the size characteristics of the products, were determined at temperatures between 80°C and 110°C, a stirring rate of 55 rpm and air velocity of 0.9 m/s for 3 kg sludge batches with initial moisture contents of 0.55 and 0.65 (d.b.). Experimental drying kinetics were compared with values derived from three models based on Fick's second law, namely: the constant diffusivity model, the simplified variable diffusivity model, and the modified quasi-stationary model.  相似文献   

10.
Convective drying of wastewater sludges and sawdust/sludge mixtures was studied. The first part of this work was an experimental study performed in a cross-flow convective dryer using 500 g of wet material extruded through a disk with circular dies of 12 mm. The results showed that the sawdust addition has a positive impact on the drying process from a mass ratio of 2/8, on a dry basis, with observed drying rates higher than the original sludge. The second part of this work consisted of developing a drying model in order to identify the internal diffusion coefficient and convective mass transfer coefficient from the experimental data. A comparison was made between fitted drying curves, well represented by the Newton's model, and the analytical solutions of the diffusion equation applied to a finite cylinder. Variations of dimensional characteristics, such as the volume and exchange surface of the sample bed, were obtained by X-ray tomography. This technique allowed us to confirm that shrinkage, which is an important phenomenon occurring during sludge and sawdust/sludge mixture drying, must be taken into account. The results showed that both the internal diffusion coefficient and convective mass transfer coefficient were affected by mixing and sawdust addition. The internal diffusion coefficient changed from 7.77 × 10?9 m2/s for the original sludge to 7.01 × 10?9 m2/s for the mixed sludge and then increased to 8.35 × 10?9 m2/s for the mixture of a mass ratio of 4/6. The convective mass transfer coefficient changed from 9.70 × 10?8 m/s for the original sludge to 8.67 × 10?8 m/s for the mixed sludge and then increased to 12.09 × 10?8 m/s for the mixture of a mass ratio of 4/6. These results confirmed that sawdust addition was beneficial to the sludge drying process as the mass transfer efficiency between the air and material increased. Reinforcing the texture of sludge by adding sawdust can increase the drying rate and decrease the drying time, and then the heat energy supply will be reduced significantly. The study also showed that neglecting shrinkage phenomenon resulted in an overestimation for the internal diffusion coefficient for the convective drying of sludges and sawdust/sludge mixtures.  相似文献   

11.
This article reports the incorporation of a rotary desiccant wheel unit into an air recirculated convective dryer and testing it by drying corn kernels. Experiments were conducted with and without the desiccant wheel at air temperatures of 50, 60, and 70°C and flow rates of 1, 1.4, and 1.8 kg/min. The effect of drying temperature, air flow rate, and desiccant wheel on drying time, drying rate, energy consumption, and specific moisture extraction rate were investigated. Statistical analysis of data showed that air drying temperature and air flow rate had significant effects on drying time and drying rate and the effect of desiccant wheel on drying time was significant. Results indicated that a desiccant wheel is an economical and useful system to utilize in dryers because it decreases drying time while increasing the drying rate and has a positive influence on energy consumption.  相似文献   

12.
Drying of two kinds of wastewater sludge was studied. The first part was an experimental work done in a discontinuous cross-flow convective dryer using 1 kg of wet material extruded in 12-mm-diameter cylinders. The results show the influence of drying air temperature for both sludges. The second part consisted of developing a drying model in order to identify the internal diffusion coefficient and the convective mass transfer coefficient from the experimental data. A comparison between fitted drying curves, well represented by Newton's model, and the analytical solutions of the equation of diffusion, applied to a finite cylinder, was made. Variations in the physical parameters, such as the mass, density, and volume of the dried product, were calculated. This allowed us to confirm that shrinkage, which is an important parameter during wastewater sludge drying, must be taken into account. The results showed that both the internal diffusion coefficient and convective mass transfer coefficient were affected by the air temperature and the origin of the sludge. The values of the diffusion coefficient changed from 42.35 × 10?9 m2 · s?1 at 160°C to 32.49 × 10?9 m2 · s?1 at 122°C for sludge A and from 33.40 × 10?9 m2 · s?1 at 140°C to 28.45 × 10?9 m2 · s?1 at 120°C for sludge B. The convective mass transfer coefficient changed from 4.52 × 10?7 m · s?1 at 158°C to 3.33 × 10?7 m · s?1 at 122°C for sludge A and from 3.44 × 10?7 m · s?1 at 140°C to 2.84 × 10?7 m2 · s?1 at 120°C for sludge B. The temperature dependency of the two coefficients was expressed using an Arrhenius-type equation and related parameters were deduced. Finally, the study showed that neglecting shrinkage phenomena resulted in an overestimation that can attain and exceed 30% for the two coefficients.  相似文献   

13.
Ilknur Alibas 《Drying Technology》2013,31(11):1425-1435
Chard leaves (Beta vulgaris L. var. cicla), which weighs 25 g with a moisture of 9.35 (db), were dried using three different drying methods, microwave, convective, and combined microwave-convective. Drying continued until leaf moisture fell down to 0.1 (db). Drying periods lasted 5–9.5, 22–195, and 1.5–7.5 min for microwave, convective, and combined microwave-convective drying, respectively, depending on the drying level. In this study, measured values were compared with predicted values obtained from Page's semi-empirical equation. Optimum drying period, color, and energy consumption were obtained for combined microwave and convective drying. The optimum combination level was 500 W microwave applications at 75°C.  相似文献   

14.
The influence of acoustic energy in drying of high ash coal in association with thermal energy is studied. The variables used in the experiments are air temperatures 70°C and 120°C, acoustic intensities 120, 135 and 145 dB for different grain sizes ranging from 44 to 1000 microns (µm). It is established that the drying process in coal is feasible above a critical sound pressure level given by P=125+10 log f (f is the acoustic frequency in KHz). Removal of moisture in coal is enhanced with time, intensity of sound and air temperature. The drying rate is more pronounced for coal with particle size range 149 to 297 microns.  相似文献   

15.
《分离科学与技术》2012,47(11):1731-1739
In this work, the thin layer drying behavior of dredged sludge from Dian Lake by convective drying methods was investigated. The results showed that the Modified Page-I model was more suitable for thin-layer drying of dredged sludge. The values of the diffusion coefficients at each temperature were obtained using Fick’s second law of diffusion, and it was varied from 6.472×10?9 to 1.143×10?8 m2/s when the temperature was changed from 100 to 160°C for the dredged sludge of 10 mm. When the thickness was changed from 5 to 20 mm, the diffusion coefficients were varied from 4.036×10?9 to 2.648×10?8 m2/s at 140°C. The activation energy of moisture diffusion was 13.1 kJ/mol.  相似文献   

16.
《Drying Technology》2013,31(3):651-667
ABSTRACT

Two-stage drying kinetics of cylindrical pieces of apples were evaluated by subjecting test samples first to various osmotic treatments and then to convective air drying to complete the drying process. Osmotic drying was carried out with cut apple cylinders of three different sizes (12, 17 and 20 mm diameter), all with a length to diameter ratio of 1 : 1, in a well agitated large tank containing the osmotic solution at the desired temperature. Solution to fruit volume ratio was kept greater than 60. After the osmotic treatment, apple slices were further dried in a cabinet drier at an average temperature 58°C. A central composite rotatable design (CCRD) with five levels of sucrose concentrations (34–63°Brix) and five temperatures (34–66°C) was used for osmotic treatment. Half-drying time and solids gain time were used as measures of rate of drying and associated diffusion coefficients for moisture loss and solids gain were evaluated. Half-drying time decreased with an increase in temperature or concentration, or a decrease in sample size. Diffusion coefficients were lower for smaller samples, and were higher for migration of moisture as compared to solids. For a given level of moisture removal, air drying times were shorter than osmotic drying times. Composite models were developed to describe the effect of process variables and particle size on the drying behavior of apple slices.  相似文献   

17.
The purpose of this research was to develop an approach for porosity estimation in the process of convective air drying. Fresh apple slices were exposed to 80°C drying to equilibrium moisture content 0.2 g/g. Porosity at different stages of drying was estimated using three approaches: (1) direct volume and mass measurements, (2) pycnometer measurements, and (3) theoretical model. All three approaches were in good agreement in the range of moisture contents above 1.0 g/g. However, at moisture contents below 0.26 g/g, significant deviation of pycnometer measurements from both experimental estimates and theoretical model was observed. This difference could be explained by transformation of open pores into closed pores due to glass transition phenomenon. This study presents an example of separate quantitative estimation of total, open-, and closed-pore porosity.  相似文献   

18.
The overall aim of this study was to assess the moisture loss kinetics and the structural changes induced by both conventional and ultrasonically assisted convective drying of eggplant tissue. Three sets of drying experiments (at 40 °C and 1 m/s) were carried out: conventional air drying and ultrasonically assisted drying at two different levels of applied ultrasonic power, 45 and 90 W. The microstructure of the dried samples was studied by scanning electron microscopy.The application of ultrasound during the convective drying of eggplant led to a significant reduction of the drying time. The ultrasonic effect was dependent on the power applied, thus, the higher the power, the faster the moisture loss. The microstructure of eggplant endocarp was greatly affected during conventional air drying, probably due to the long drying times. This microstructure was better preserved after the application of a moderate ultrasonic power (45 W), due to the shorter drying time and the mild mechanical effects of ultrasound on the endocarp cells.  相似文献   

19.
This article deals with the drying of the waste by-product of an activated sludge manure treatment plant. The studies concern the low temperature drying of planar plates 3 cm thick. The upper face of the sludge is subjected to a tangential air flow controlled for speed, temperature, and humidity. The lower face can be subjected to contact heating. The maximum temperature for air and the bottom of the product is 60 °C. After characterizing the main thermophysical and hygric properties of the product, the laboratory set-up specifically designed for this study is described. Experiments are performed to determine temperature, mass loss, and deformation evolutions for different boundary conditions. These experimental data are used to build a numerical one-dimensional heat and mass transfer model to predict temperature and moisture content fields. Sludge is assimilated with a hygroscopic porous medium, and shrinkage is not taken into account. To validate this model, several comparisons between simulated and measured data are made for different drying methods (hot or fresh air convective drying, contact drying, and combined drying) and various drying conditions.  相似文献   

20.
After mechanical dewatering, sewage sludge has a moisture content of around 80 wt% and further disposal is required. A new sewage sludge semi-drying (dewatering) process is proposed and verified. It combines thermal hydrolysis and subsequent mechanical dewatering, with less energy consumption than traditional thermal drying. Sludge treated using this new process satisfies further disposal requirements (e.g., landfill or autothermal incineration). In the present study, a high-pressure test reactor was used to study the thermal hydrolysis of dewatered sludge. Thermally hydrolyzed sludge was subsequently dewatered by centrifugal sedimentation or by pressure filtration. The amount of organic compounds returning to the water phase was also measured. According to the results from centrifugal settling tests, the optimal thermal hydrolysis treatment temperature was 180°C. The moisture content then dropped to 1.44 kg/kg dry solids (DS; 59 wt%) after dewatering under relative centrifugal force of 9,000 × g from 5.67 kg/kg DS (85 wt%). Pressure filtration further reduced the moisture content of filter cakes to only 0.5 kg/kg DS (33 wt%, hydrolysis temperature 180°C). After thermal hydrolysis, the heating value of sludge (moisture-free basis) was about 80% that of the untreated sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号