首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effects of chemical pretreatment and air drying temperature on drying kinetics, shrinkage, density and rehydration ratio of grapes were determined at various moisture contents. It was observed that the chemical pretreatment employed - a solution of 2% CaCCb with 0 to 3% ethyl oleate - increased considerably the drying rate. It was established that the shrinkage increased with drying temperature between 40 to 80°C and decreased with increasing concentration of ethyl oleate in the chemical pretreatment solution.  相似文献   

2.
ABSTRACT

Drying studies were carried out on single droplets of gelatin solution, typifying a skin forming, heat-sensitive material. Each droplet was suspended from a novel rotating glass nozzle which enabled direct measurement of its weight and temperature during drying. Observations using this appartatus successfully detected the decrease in core temperature and increase in drying rate resulting from granule dissolution at 30 °C.

The study covered air temperatures in the range 19 °C–175 °C. Scanning Electron Microscopy was used to examine the dried crusts. The resistance of the skin to vapour diffusion was significantly increased with an increase in the air temperature. At air temperature > 60 °C the dried particle lost the structure and properties of the original powder. The optimum drying conditions to avoid this were predicted for this type of skin forming-material.  相似文献   

3.
polyethylene oxide (PEO)/gelatin blend membranes of four different compositions (w/w) (5/95, 10/90, 20/80, and 30/70) were prepared by solution casting. The films were irradiated by gamma radiation at a total dose of 250 krad (dose rate of 321 krad/h). The X‐ray diffractograms demonstrate both the PEO and radiation influences on the blend thus enhancing crystallinity of gelatin. X‐ray diffractograms of irradiated blend films containing 30% PEO showed highest integrated intensity. The DTA and TGA study showed that the irradiated blend films are more thermally stable than the non‐irradiated films. TMA study showed that the incorporation of PEO into gelatin increased melting point of the blend films. The melting point for irradiated gelatin film changes from 52.9°C to 75.6°C and the glass point changes from 60.3°C to 90.6°C. The phase separation and compatibility of the PEO/gelatin blend films were studied by scanning electron microscopy (SEM). The experimental results showed that the blend films exhibit higher thermal stability and improved mechanical properties in dry state, which suggests the occurrence of interaction detected by XRD and DTA among gelatin, PEO, and water molecules in the films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
ABSTRACT

Drying of lightly salted sardine (Sardinella aurita) was accomplished using three air temperatures (35°C, 40°C, 50°C) and three air velocities (0.5 m/s, 1.5 m/s, 2 m/s); the effects of drying conditions on drying kinetics were studied. As for all biological products, air temperature is the main factor influencing the drying kinetics. However, over a given temperature which seems to correspond to protein modification (50°C), and at a high air flow rate (2 m/s and 2.5 m/s) a crust formation on the surface of the fish, due to the combined effect of heat and salt was observed. This phenomenon inhibited the drying rate. From the drying curves, two falling rate periods were observed. The dimensionless drying rate versus a dimensionless moisture content data were regressed by the Marquardt Levenberg non-linear optimization method to obtain an empirical equation describing the salted sardine characteristic drying curve.  相似文献   

5.
The effects of alginate concentration and drying temperature on drying kinetics/characteristics of alginate solution and mechanical property of formed solid films were examined. Solid films were fabricated through thin-layer drying of 1 to 4%w/w sodium alginate solution at 40, 60, and 80°C using the solvent-evaporation method. The water weight loss profile of alginate solution undergoing drying was recorded with time. The polymer weight of all solid films was kept constant. The plasticity of films was evaluated using thermomechanical analyzer. The findings indicated that both constant rate and falling rate periods existed during drying of dilute alginate solution or at low drying temperature since both surface and core waters were available for drying. The falling rate period dominated in drying of an alginate solution of high polymer concentration and at high drying temperatures with internal diffusion being the governing transport phenomenon for water. In the latter, an exponential relationship between water content and drying time was obtained. The drying process of 4%w/w alginate solution at 60 and 80°C was relatively simple as there was only a single drying stage, viz. the falling rate period requiring no consideration of critical moisture content. The drying rate was faster than those obtained from the dilute alginate solution or conducted at low temperature, such as 40°C. The plasticity attributes of films prepared from 4%w/w alginate solution can be modulated to a degree similar to films prepared from dilute alginate solution or dried at low temperature via changing the drying temperature between 60 and 80°C.  相似文献   

6.
《Drying Technology》2013,31(9):1843-1854
ABSTRACT

Drying of Poly(vinyl acetate) latex films has wide application in the industries of synthetic fibers, adhesives, coatings, paints, etc. In this investigation, drying of Poly(vinyl acetate) latex film was studied experimentally in a drying tunnel where the air velocity and temperature were controlled. The water evaporation rate was obtained by weighing the latex film during the drying process. The weight loss of latex was measured for different polymer concentrations, film thicknesses, drying areas, temperatures, and air velocities. Results emphasize the important role of these parameters on the relative water transport from the latex film. Increasing air velocity and temperature leads to a significant increase of the weight loss of latex and drying rate. Changing other parameters affects only the rate of weight loss but not the constant drying rate.  相似文献   

7.
ABSTRACT

The drying kinetics of Muscatel grapes at 60°C and a relative air humidity of 22% were determined after various pretreatments had been applied to the grapes. The pretreatment parameters varied were the chemical agent (potassium carbonate solution with or without olive oil, or sodium hydroxide solution); the duration of pretreatment; and the temperature and concentration of the solution. A 3 minute pretreatment with an aqueous solution of K2CO3 and olive oil at 60°C reduced drying time from about 80 h to 20 h. Optimal drying load corresponded to a single layer of almost close-packed grapes on each tray. The experimental drying kinetics were satisfactorily reproduced by a model in which both grape size and the effective coefficient of diffusion are functions of moisture content.  相似文献   

8.
Drying kinetics of biofilms from chestnut starch and hybrid carrageenan were experimentally determined and modelled. The biofilms were obtained by mixing the respective solutions (4.0% w/w) of both substances in the proportion 80/20 of chestnut starch/hybrid carrageenan. Glycerol (at 5.0% w/w) was added to some biofilms. Biofilms were prepared using a casting method. Drying kinetics were performed at 30, 40, and 50°C for forced air convection (1.8 ± 0.1 m/s) and 30 and 50°C for natural convection. Constant drying rate period, above critical moisture content (5.4 and 4.2 kg water/kg d.b. without and with glycerol, respectively) allowed the evaluation of the heat transfer coefficients. The water diffusion coefficients were determined in the falling rate period assuming a semi-infinite slab with variable thickness. Water sorption isotherms of biofilms at 25°C were determined and fitted with the GAB model. Mechanical properties of different biofilms showed no significant differences for Young's modulus values (44.0 ± 4.6 MPa). Nevertheless, films prepared at 30°C under natural drying showed the lowest values of tensile strength and elongation (32.2 ± 4.9 MPa and 0.85 ± 0.11%).  相似文献   

9.
Edible films are alternative packaging, which have recently received much attention due mainly to environmental reasons. Edible films may be formed from edible biomaterials such as polysaccharides, proteins, or lipids. Among these biopolymers, chitosan is of interest because it has a good film-forming property and is biodegradable, biocompatible, and nontoxic. Several techniques have been used to prepare edible chitosan films with various degrees of success. However, it is always interesting to find an alternative technique to produce films of superior quality at shorter processing (drying) time. In this study, the influences of different drying methods and conditions on the drying kinetics and various properties of chitosan films were investigated. Drying at control conditions (ambient air drying and hot air drying at 40°C) as well as vacuum drying and low-pressure superheated steam drying (LPSSD) at an absolute pressure of 10 kPa were carried out at different drying temperatures (70, 80, and 90°C). The properties of chitosan films, in terms of color, tensile strength, percent elongation, water vapor permeability (WVP), glass transition temperature (T g ), and crystallinity, were also determined. Based on the results of both the drying behavior and film properties, LPSSD at 70°C was proposed as the most favorable conditions for drying chitosan films.  相似文献   

10.
ABSTRACT

The air drying kinetics of fresh and osmotically dehydrated fruits (apples) was determined. Two sugars, glucose and sucrose, were used as osmotic dehydration agents. Three levels of sugar concentration (15%, 30% and 45%) and several times of immersion into the sugar solution were used. Following the osmotic preconcentration, the fruit samples were dried at 55°C and the weight of material was recorded. The effective water diffusivity of samples treated under various osmotic conditions was estimated and the results were related to the sugar content and the bulk porosity of the samples. The effective water diffusivity, resulting from the application of the diffusion equation to the drying kinetics of the apples was found to decrease significantly for the samples pretreated by a concentrated sugar solution (e.g. 45%), evidently due to the lower porosity and other physicochemical factors. The low diffusivity may be beneficial in the storage stability and utilization of dehydrated fruits.  相似文献   

11.
Thin-layer drying experiments under controlled conditions were conducted for green sweet pepper in heat pump dryer at 30, 35, and 40°C and hot air dryer at 45°C with relative humidities ranging from 19 to 55%. The moisture content of sweet pepper slices reduced exponentially with drying time. As the temperature increased, the drying curve exhibited a steeper slope, thus exhibiting an increase in drying rate. Drying of green sweet pepper took place mainly under the falling-rate period. The Page equation was found to be better than the Lewis equation to describe the thin-layer drying of green sweet pepper with higher coefficient of determination and lower root mean square error. Drying in heat pump dryer at 40°C took less time with higher drying rate and specific moisture extraction rate as compared to hot air drying at 45°C due to lower relative humidity of the drying air in a heat pump dryer though the drying air temperature was less. The retention of total chlorophyll content and ascorbic acid content was observed to be more in heat pump–dried samples with higher rehydration ratios and sensory scores. The quality parameters showed a declining trend with increase in drying air temperature from 30 to 45°C. Keeping in view the energy consumption and quality attributes of dehydrated products, it is proposed to dry green sweet pepper at 35°C in heat pump dryer.  相似文献   

12.
《Drying Technology》2013,31(9):2173-2182
Abstract

The nixtamalization is an alkaline cooking process in corn tortillas industry that uses large quantities of water (5:1 corn weight) and producing a byproduct called nejayote. In this work, drying kinetic of insoluble fraction from nejayote was obtained using a hot air cabinet dryer at 60, 75, and 90°C. The air rate and water content were 1.5 m/s and 0.028 kg of water/kg of dry air, respectively. Sorption isotherms were measured by the COST method with sulfuric acid solutions at 30, 45 and 60°C. Results showed a difference in drying kinetics/drying time between drying temperatures of 60 and 75°C, and practically no difference between 75 and 90°C. This was probably due to the development of a superficial crust on the product. The shape of sorption curves was as expected; no temperature effect was identified but it is a common behavior for products with high sugar content. Finally the sorption isotherm was predicted based on primary chemical compounds (carbohydrates, proteins, crude fiber, and calcium hydroxide).  相似文献   

13.
ABSTRACT

The paper presents new data for thin-layer drying characteristics of Thai long grain rough rice measured under various conditions of drying air temperature (35 to 60?°C), drying air relative humidity (30 to 70 % ) and the initial moisture content of rough rice (20 to 40 % dry basis). Empirical equations were developed using the instantaneous weight, the weight loss and drying time, with temperature, relative humidity and initial moisture content of rough rice as the independent variables. A computer program was developed to simulate the deep-bed drying process. The thin-layer drying equation developed before was used in the computer simulation. Experimental data from the fixed bed dryer were compared with the results from the calculation.  相似文献   

14.
ABSTRACT

Effects of size (whole and sliced), pre-treatment (blanching in water and 0.5% NaCl solution at 95° C) and temperature of drying air (40, 55 and 70° C) on the drying characteristics and quality of okra were studied. Estimation of the drying rate established that the drying of okra takes place under the falling rate period. Page's model was found to adequately describe the drying behavior of okra over a wide range of drying conditions used in the study. The coefficients of Page's model were correlated with air temperature and it was found that the dependence of the rate constant on the drying air temperature can be described using the Arrhenius law. The quality of the dried product was found to be best when okra was sliced and blanched at 95° C in 0.5% NaCl solution for 5 min and then dried at 55° C.  相似文献   

15.
采用失重法研究了天然胶乳厚胶膜在热风与红外线两种干燥方式下的干燥过程。研究结果表明,在相同条件下,红外干燥的干燥速率常数远大于热风干燥,采用红外干燥可大大缩短干燥时间,干燥温度和厚度均显著影响干燥过程,红外干燥对温度更敏感。通过动力学拟合结果,得到了干燥动力学方程,可以预测干燥时间。  相似文献   

16.

The withering characteristics of tea leaves were examined for different temperatures. Tea leaves were withered at a temperature range of 20–45°C with a constant air velocity of 1.1 m/s. The experimental results illustrated the absence of constant-rate drying period and withering took place only in the falling-rate period. During the falling-rate period, at constant drying air flow rate, the drying rate increased and drying time decreased with the increase in drying air temperature. Drying models of Henderson and Pabis and Page were evaluated based on mean bias error (EMB), root mean square error (ERMS), correlation coefficient (R2), and the chi square (χ2). The Henderson and Pabis model was found to be a better model for describing the withering characteristics of tea leaves for each of the temperatures of 20, 25, 30, and 35°C. The values obtained from Page model were found to be more reasonable for temperatures of 40 and 45°C than the other model. Both the models closely fitted the withering data within a certain range of temperature. The Henderson and Pabis model gave better prediction and satisfactorily described the withering characteristics of tea leaves at temperatures lower than 40°C whereas the Page model fitted well at temperatures greater than 40°C.  相似文献   

17.
Abstract

Grape is one of the most popular fruits and various types of grape have been cultivated by more than 100 countries around the World. The wine and juice industry produces large quantities of by-product, called grape pomace (GP) as an industrial waste and it consists of skins, seeds, and stems. Various processes such as separation, pressing, drying, and milling are applied to benefit from its health effects. In this study, the seeded black GP Kalecik karas? (Vitis vinifera) was dried in an assisted closed cycle heat pump dryer (HPD) designed for high-moisture products to investigate the drying behaviors of GP. The effects of drying air temperature on bioactive properties and the drying characteristics of GP, and performance of system have discussed. Experiments were carried out at two different temperatures (45 and 50°C) and air velocity of 1.0 m/s. It was seen that increasing temperature decreased the drying time, coefficient of performance of whole system (COPws), and specific energy consumption (SEC). The average values of COPws for temperatures 45°C and 50°C were calculated as 3.28 and 3.10, respectively. The drying efficiencies (DE) at drying air temperature of 45°C and 50°C ranged from 2 to 12% and from 2 to 15%, respectively. Additionally, result of analysis has indicated that using a HPD at lower temperatures increases performance of system despite of higher energy input. Bioactive properties of dried samples at drying air temperature of 45°C are better than 50°C. The results show that drying the GP at low temperature is more suitable for product quality. For this reason, heat pump may be preferred. It shows that this drying system with higher capacities in the future can be recommended as an alternative technique in terms of energy usage, drying time, and performance of system.  相似文献   

18.
《Drying Technology》2013,31(3):651-667
ABSTRACT

Two-stage drying kinetics of cylindrical pieces of apples were evaluated by subjecting test samples first to various osmotic treatments and then to convective air drying to complete the drying process. Osmotic drying was carried out with cut apple cylinders of three different sizes (12, 17 and 20 mm diameter), all with a length to diameter ratio of 1 : 1, in a well agitated large tank containing the osmotic solution at the desired temperature. Solution to fruit volume ratio was kept greater than 60. After the osmotic treatment, apple slices were further dried in a cabinet drier at an average temperature 58°C. A central composite rotatable design (CCRD) with five levels of sucrose concentrations (34–63°Brix) and five temperatures (34–66°C) was used for osmotic treatment. Half-drying time and solids gain time were used as measures of rate of drying and associated diffusion coefficients for moisture loss and solids gain were evaluated. Half-drying time decreased with an increase in temperature or concentration, or a decrease in sample size. Diffusion coefficients were lower for smaller samples, and were higher for migration of moisture as compared to solids. For a given level of moisture removal, air drying times were shorter than osmotic drying times. Composite models were developed to describe the effect of process variables and particle size on the drying behavior of apple slices.  相似文献   

19.
Gelatin is a natural biological macromolecule derived from the collagen in the connective tissue of the skin, bone and other tissues. It has been widely used in medicine, food and industrial production and other fields for easy molding, excellent compatibility and biodegradability. However, physical and chemical disadvantages impede its further application, seriously. Therefore, modification of the gelatin films becomes more and more important. In this study, the gelatin/nanocrystalline cellulose (NCC) composite films were prepared by casting method with 4% glycerol as plasticizer. The effect of NCC on the properties of the composite films was investigated by the characterization of its morphology and mechanical, thermal, and optical properties and water adsorption. The results showed that mechanical, thermal stability and water absorption properties of the gelatin/NCC composite film were obviously improved. The composite films showed the highest tensile strength (13.56?±?0.25 MPa) when the mass concentration of NCC was 0.6%. Adding NCC to gelatin benefited the thermal stability of composite films. The gelatin/NCC composite film of 0.4% NCC had the highest melting transition temperature (138.9 °C). The composite films exhibited the lower water absorption (271.1%) when mass concentration of NCC was 1.0%. Thus, these results indicated that NCC could affect the properties of gelatin-based composite films, and showed it has potential for application in food packing.  相似文献   

20.
ABSTRACT

Dehydration by a forced convection process is one potential method to add value to low-grade asparagus for marketing purposes. The objectives of this study were to determine the optimum drying temperature, air velocity, and predrying blanching treatment and study the effects of those parameters on the drying curves for low-grade asparagus and the efficiency of the drying process. The ranges of investigation were 60 to 93°C and 0.14 to 0.44 m/s for drying temperature and air velocity, respectively. Drying at 51 °C and 0.30 m/s yielded product with an optimum quality, and drying at 79° C and 0.18 m/s yielded the optimum process efficiency of 17.9%. Drying temperature, air velocity, and predrying blanching treatment all affected the rate of drying in the constant-rate drying period and the length of the constant-rate drying period. In the falling-rate period, all of the process parameters studied had some effect on the shape of the drying curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号