首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The in vitro hydrolytic degradation behavior of poly(d,l-lactide-co-glycolide) (PLGA) has been systematically investigated from the drug eluting coronary stents with respect to different copolymer compositions. The drug-polymer coated stents were incubated in phosphate buffer saline (pH 7.4) at 37 °C and 120 rpm up to 12 months to facilitate hydrolytic degradation. Gel permeable chromatography, differential scanning calorimetry and scanning electron microscopy were employed to characterize their degradation profiles. The study supports the bulk degradation behavior for PLGA from coated stents. Molecular weight of polymer decreased immediately after immersion in PBS but mass loss was not observed during first few days. The rate of hydrolytic degradation was influenced by copolymer ratio, i.e., degradation of 50:50 PLGA was fastest followed by 65:35 PLGA and 75:25 PLGA. The drug release from PLGA coated stent followed biphasic pattern which was governed by surface dissolution and diffusion of drug rather than polymer degradation.  相似文献   

2.
The aim of the present work is the development of a theoretical model describing the transport phenomena involved in food drying. A fundamental multiphase approach was utilized to account for the simultaneous presence of both liquid water and vapor within the sample undergoing drying. The transport equations referred to the food were coupled, by a proper set of boundary conditions, to momentum and heat and mass transfer equations referred to the drying air, thus obtaining a general model that did not rely on the specification of any heat and mass transfer coefficient at the food/air interfaces.  相似文献   

3.
New ABC type terpolymers of poly(ethoxyethyl glycidyl ether)/poly(ethylene oxide)/poly(d,l-lactide) were obtained by multi-mode anionic polymerization. After successive deprotection of the ethoxyethyl groups from the first block, highly hydroxyl functionalized copolymers of polyglycidol/poly(ethylene oxide)/poly(d,l-lactide) were obtained. These copolymers form elongated ellipsoidal micelles by direct dissolution in water. The micelles consist of a poly(d,l-lactide) core and stabilizing shell of polyglycidol/poly(ethylene oxide). The hydroxyl groups of polyglycidol blocks situated at the micelle surface provide high functionality, which could be engaged in further chemical modification resulting in a potential drug targeting agents. The micellization process of the copolymers in aqueous media was studied by hydrophobic dye solubilization, static and dynamic light scattering, and transmission electron microscopy.  相似文献   

4.
A thermosensitive polymer that can either be soluble or insoluble in water was synthesized by electron beam irradiation N-isopropylacrylamide (NIPAM) and β-mercaptopropionic acid (MPA) without the presence of initiator. The polymer was then reacted with p-aminobenzamidine (PABA) using water-soluble carbodiimide (WSC) to introduce an affinity ligand. Radiation grafting of poly(NIPAM) and conjugation of ligand was successfully completed. It was found that the graft reaction could be done at higher dose and carboxyl group was introduced during irradiation of samples in air. Production and precipitate of the carboxylated poly(NIPAM) were investigated. Some results of direct radiation polymerization in this system are also given. The effect of radiation characteristics such as irradiation dose on the lower critical solution temperature (LCST) and conjugation of PABA on the prepared poly(NIPAM) has also been investigated. The precipitate of the grafted polymer has thermal sensitivity and their LCST is close to 35°C.  相似文献   

5.
《分离科学与技术》2012,47(5):735-743
This paper is mainly about extending research on application and comparison of preparative high-speed countercurrent chromatography (HSCCC) and preparative high performance liquid chromatography (HPLC) in chiral separations. Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by HSCCC and HPLC were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L?1 phosphate buffer at pH 2.68 containing 20 mmol L?1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L?1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n-hexane-methyl tert.-butyl ether-0.1 molL?1 phosphate buffer solution at pH 2.67 containing 0.1 mol L?1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L?1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, totally 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 114-116 mg of enantiomers with 98-99% purity and 89-92% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper, preparative enantioseparation by HSCCC and HPLC was compared from various aspects.  相似文献   

6.
Poly(γ-benzyl l-glutamate)-block-poly(l-phenylalanine) was prepared via the ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride and l-phenylalanine N-carboxyanhydride using n-butylamine·HCl as an initiator for the living polymerization. Polymerization was confirmed by 1H-nuclear magnetic resonance spectroscopy and matrix assisted laser desorption ionization time of flight mass spectroscopy. After deprotection, the vesicular nanostructure of poly(l-glutamic acid)-block-poly(l-phenylalanine) particles was examined by transmission electron microscopy and dynamic light scattering. The pH-dependent properties of the nanoparticles were evaluated by means of ζ-potential and transmittance measurements. The results showed that the block copolypeptide could be prepared using simple techniques. Moreover, the easily prepared PGA-PPA block copolypeptide showed pH-dependent properties due to changes in the PGA ionization state as a function of pH; this characteristic could potentially be exploited for drug delivery applications.  相似文献   

7.
Mohammad K. Hassan 《Polymer》2007,48(7):2022-2029
Broadband dielectric spectroscopy was used to examine carboxylic acid-terminated poly(d,l-lactide) samples that were hydrolytically degraded in 7.4 pH phosphate buffer solutions at 37 °C. The dielectric spectral signatures of degraded samples were considerably more distinct than those of undegraded samples and a Tg-related relaxation associated with long range chain segmental mobility was seen. For both degraded and undegraded samples, a relaxation peak just beneath a DSC-based Tg was observed, which shifts to higher frequency with increasing temperature. Thus, this feature is assigned as the glass transition as viewed from the dielectric relaxation perspective. Linear segments on log-log plots of loss permittivity vs. frequency, in the low frequency regime, are attributed to d.c. conductivity. An upward shift in relaxation peak maximum, fmax, observed especially after 145 d of immersion in buffer, implies a decrease in the time scale of long range segmental motions with increased degradation time.Permittivity data for degraded and undegraded materials were fitted to the Havriliak-Negami equation with subtraction of the d.c. conductivity contribution to uncover pure relaxation peaks. Parameters extracted from these fits were used to construct Vogel-Fulcher-Tammann-Hesse (VFTH) curves and distribution of relaxation time, G(τ), curves for all samples. It was seen that the relaxation times for the α-transition in both degraded and undegraded samples showed VFTH temperature behavior. G(τ) curves showed a general broadening and shift to lower τ with degradation, which can be explained in terms of a broadening of molecular weight within degraded samples and faster chain motions.  相似文献   

8.
Eamor M. Woo  Ling Chang 《Polymer》2011,52(26):6080-6089
Crystallization of nonequimolar compositions of poly(d-lactic acid) with low-molecular-weight poly(l-lactic acid) (PDLA/LMw-PLLA) blends leads to formation of various fractions of stereocomplexed PLA (sc-crystallites) and homocrystallites (PDLA or PLLA). For the PDLA/LMw-PLLA blends within the composition window of LMw-PLLA content between 30 and 50 wt%, only sc-crystal exists and no homocrystal is present. On the other hand, for PDLA/LMw-PLLA blends with excess PDLA, e.g. PDLA/LMw-PLLA = 90/10, atomic-force microscopy (AFM) characterization on various stages of crystallization of sc-PLA crystal with PDLA homocrystal shows a repetitive stacking of excess PDLA on pre-formed sc-PLA crystal serving as crystallizing templates. The crystallization initially begins with string-like (fibril-like) PDLA lamellae, followed with PDLA aggregating on sc-PLA crystal into a bead-on-string crystal, then growing to thicker irregularly-shaped dough-like lamellae. Repetitive growth cycle from strings to bead-on-string lamellae continues on top of the dough-like lamellae as new substrates, until ending impingement of the PDLA spherulites.  相似文献   

9.
Fractionated samples of d,l-poly(lactic acid) (PLA) were prepared and the dielectric normal mode relaxation was studied for dilute and semi-dilute solutions of the PLA in a good solvent benzene. Results indicate that in the dilute regime the normal mode relaxation time is proportional to [η]Mw in agreement with the Rouse-Zimm theory, where [η] and Mw denote the intrinsic viscosity and weight average molecular weight, respectively. The dielectric relaxation strength which is proportional to the mean square end-to-end distance 〈r2〉 increases with increasing Mw with the power of 2ν, where ν is the excluded volume parameter determined from [η]. The relaxation time in the semi-dilute regime increases with increasing concentration C due to increases of the entanglement density and the friction coefficient. The relaxation time corrected to the iso-friction state agrees approximately with the dynamic scaling theories. The relaxation strength decreases with increasing concentration indicating that 〈r2〉 decreases on account of the screening of the excluded volume effect. The concentration dependence of 〈r2〉 agrees approximately with the scaling theory proposed by Daoud and Jannink.  相似文献   

10.
Géraldine Rohman 《Polymer》2007,48(24):7017-7028
The use of semi-hydrolyzable oligoester-derivatized interpenetrating polymer networks (IPNs) as nanostructured precursors provides a straightforward and versatile approach toward mesoporous networks. Different poly(d,l-lactide) (PLA)/poly(methyl methacrylate) (PMMA)-based IPNs were synthesized by resorting to the so-called in situ sequential method. The PLA sub-network was first generated from a dihydroxy-telechelic PLA oligomer via an end-linking reaction with Desmodur® RU as a triisocyanate cross-linker. Subsequently, the methacrylic sub-network was created by free-radical copolymerization of methyl methacrylate (MMA) and a dimethacrylate (either bisphenol A dimethacrylate or diurethane dimethacrylate) with varying compositions (initial MMA/dimethacrylate composition ranging from 99/1 to 90/10 mol%). Both cross-linking processes were monitored by real-time infrared spectroscopy. The microphase separation developed in IPN precursors was investigated by differential scanning calorimetry (DSC). Furthermore, the quantitative hydrolysis of the PLA sub-network, under mild basic conditions, afforded porous methacrylic structures with pore sizes ranging from 10 to 100 nm -at most- thus showing the effective role of cross-linked PLA sub-chains as porogen templates. Pore sizes and pore size distributions were determined by scanning electron microscopy (SEM) and thermoporometry via DSC measurements. The mesoporosity of residual networks could be attributed to the good degree of chain interpenetration associated with both sub-networks in IPN precursors, due to their peculiar interlocking framework.  相似文献   

11.
In this study, the copolyesters based on 4-hydroxybenzoic acid (HBA) and vanillic acid (VA), lactic acid (LA) and poly(butylene terephthalate) (PBT) were synthesized via melt polymerization and fully characterized by various measurements. The influences of content of HBA and VA units on thermal behavior, structure and degree of crystallinity of copolyesters were discussed in more detail. It was found that the copolymerization of aliphatic and aromatic units together could make the best use of advantages of the respective polyesters. Moreover, the copolyesters with more than 40 mol% of HBA and VA units could show liquid crystallinity in broad temperature range.  相似文献   

12.
Jeffrey S. Wiggins 《Polymer》2006,47(6):1960-1969
d,l-Lactide was initiated with 1,4-butanediol in the presence of stannous octoate catalyst to provide hydroxyl-terminated poly(d,l-lactide) at 5000 and 20,000 g/mol. Portions of these materials were reacted with succinic anhydride in the presence of 1-methylimidazole to convert the hydroxyl functionality to succinic acid-terminated polymers in relatively high yield. The four materials were placed in a 7.4 pH buffered saline solution at 37 °C and monitored up to 180 days for their relative moisture uptake and weight loss behaviors. Carboxylic acid functionality displayed a dramatic effect on the moisture uptake behaviors for the 5000 and 20,000 g/mol polymers when compared to their respective hydroxyl functional materials. Carboxylic acid functionality significantly increased the hydrolytic degradation rate and mass loss behavior for the 5000 g/mol material, but did not affect the hydrolytic degradation rate for the higher molecular weight sample. These results suggest that moisture uptake is not the rate limiting step for the hydrolytic degradation high molecular weight poly(d,l-lactide).  相似文献   

13.
Yanan Yang  Jing Cai  Xiuli Zhuang  Xiabin Jing 《Polymer》2010,51(12):2676-2549
A novel biodegradable AB-type diblock copolymer poly(L-lactic- co-glycolic acid)-block-poly(l-glutamic acid) (PLGA-b-PGA) was synthesized by a macromolecular coupling reaction between carboxyl-terminated PLGA and amino-terminated poly(γ-benzyl-glutamate) (PBLG) and the subsequent elimination of the protecting benzyl group. The structures of PLGA-PGA and its precursors were confirmed by Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC). This synthetic strategy simplified a former synthesis process of polypeptide-poly(l-lactic acid)(PLA); by using this new synthetic route the molecular weight and block ratio of PLGA-PGA could be easily controlled by adjusting the chain length of PLGA/PGA. The pH sensitivity and self-assembly behavior of PLGA-PGA copolymer were investigated by environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results showed that the copolymer exhibited high pH responses, and the morphologies of the copolymer aggregates underwent four stages orderly with the pH increase (pH = 3-9): a disorganized form, micelles, semi-vesicles with thick walls and vesicles. Such a pH-dependent self-assembly process of the copolymer is promising for drug control release and bio-applications.  相似文献   

14.
Ester Zuza 《Polymer》2008,49(20):4427-4432
The segmental dynamics of polylactide chains covering the Tg − 30 °C to Tg + 30 °C range was studied in absence and presence of a crystalline phase by dynamic mechanical analysis (DMA) using the framework provided by the WLF theory and the Angell's dynamic fragility concept. An appropriate selection of stereoisomers combined with a thermal conditioning strategy to promote crystallization (above Tg) or relaxation of chains (below Tg) was revealed as an efficient method to tune the ratio of the rigid and mobile amorphous phases in polylactides. A single bulklike mobile amorphous phase was taken for poly(d,l-lactide) (PDLLA). In turn three phases, comprising a mobile amorphous fraction (MAF, XMA), a rigid amorphous fraction (RAF, XRA) and a crystalline fraction (Xc) were determined in poly(l-lactide) (PLLA) by modulated differential scanning calorimetry (MDSC) according to a three-phase model. The analysis of results confirms that crystallinity and RAF not only elevate the Tg and the breadth of the glass transition region but also yields an increase in dynamic fragility parameter (m) which entails the existence of a smaller length-scale of cooperativity of polylactide chains in confined environments. Consequently it is proposed that crystallinity is acting in polymeric systems as a topological constraint that, preventing longer range dynamics, provides a faster segmental dynamics by the temperature dependence of relaxation times according to the strong-fragile scheme.  相似文献   

15.
《Drying Technology》2012,30(15):1714-1719
The polymer-coated inclusion complex powder formation of D-limonene and β-cyclodextrin obtained by spray drying was investigated with respect to the effects of various types of polymer coating agents on the powder particle size and morphology. The addition of the polymer coating agent affected the average particle size, morphology, and internal structures of the spray-dried powders. The average particle diameter of the uncoated spray-dried powders was approximately 5 µm. The powder particle size increased upon the addition of a polymer coating reagent. With the addition of 9 wt% of the polymer coating agent, an average diameter of approximately 80 µm was obtained for the spray-dried powder particles. However, further addition showed a negligible effect on the particle size. Inclusion complex crystals were observed on the surface and inside of the powder particles.  相似文献   

16.
Linear 1-arm and 2-arm poly(l-lactide) [i.e., poly(l-lactic acid) (PLLA)] polymers having relatively low number-average molecular weights (Mn) (≤5 × 104 g mol−1) were synthesized by ring-opening polymerization of l-lactide initiated with tin(II) 2-ethylhexanoate (i.e., stannous octoate) and coinitiators of l-lactic acid, 1-dodecanol (i.e., lauryl alcohol), and ethylene glycol (these PLLA polymers are abbreviated as LA, DN, and EG, respectively). For Mn below 1.5 × 104 g mol−1, non-isothermal crystallization during heating and isothermal spherulite growth were disturbed in linear 2-arm PLLA (EG) compared to those in linear 1-arm PLLA (LA and DN). This finding indicates that the chain directional change, the incorporation of the coinitiator moiety as an impurity in the middle of the molecule, and their mixed effect disturbed the crystallization of linear 2-arm PLLA compared to that of linear 1-arm PLLA, in which the chain direction is unvaried and the coinitiator moiety is incorporated in the chain terminal. Also, the finding strongly suggests that the reported low crystallizability of multi-arm PLLA (arm number ≥ 3) compared to that of linear 1-arm PLLA is caused not only by the presence of branching points but also by the chain directional change, the incorporation of the coinitiator moiety in the middle of the molecule, and their mixed effect. The effects of the chain directional change and the position of the incorporated coinitiator moiety on the crystallization and physical properties of linear 1-arm and 2-arm PLLA decreased with an increase in Mn.  相似文献   

17.
The β-crystal formed in PP/PET fiber composites was investigated. The results indicate that PET fibers (PF) can preferably lead to α-crystal formation on their surface. Besides, α-crystals occur earlier than those in the bulk. The β-crystal, might be induced by temperature gradient, only formed away from the PF in composites with lower content of PF. The higher the content of PF is, more possible the PF network is constructed. The transcrystallinity induced by PF will rapidly occupy the region between the adjacent PFs. Consequently, owing to the spatial confinement, β-form is suppressed in the composites with higher content of PF.  相似文献   

18.
In the present study, glucose and galactose inhibition effects for β-galactosidase hydrolyzing lactose recovered from whey were investigated. The experiments were carried out in 250 mL of 25 mM phosphate buffer solution containing 1, 1.5, 2, 4, and 6% (w/v) lactose recovered from whey by using a commercial β-galactosidase produced from Kluyveromyces marxianus lactis at a constant temperature of 37°C, pH 6.5, and enzyme concentration of 1 mL/L, in a batch reactor system. The amounts of glucose and galactose added to the reaction solution were 6.25, 12.5, and 25 g/L. A second-order kinetic expression effectively simulated the data of residual lactose concentration with respect to processing time for each experimental condition examined. The Lineweaver-Burk plots showed that the inhibition effects of glucose and galactose were uncompetitive. The inhibition constants (Ki) obtained for glucose and galactose (10.32 g/L and 13.03 g/L, respectively) showed that the glucose was the most effective inhibitor for β-galactosidase.  相似文献   

19.
Yuushou Nakayama  Kenta Sasaki 《Polymer》2009,50(20):4788-2103
Catalytic behavior of tetrahydroborate complexes of rare earth metals, Ln(BH4)3(THF)x (1: Ln = La, x = 3; 2: Ln = Pr, x = 2; 3: Ln = Nd, x = 3; 4: Ln = Sm, x = 3; 5: Ln = Y, x = 2.5; 6: Ln = Yb, x = 3), for ring-opening polymerization (ROP) of six-membered cyclic esters, δ-valerolactone (VL) and d,l-lactide (d,l-LA), was studied. The controlled polymerization of VL with 1-6 proceeded in THF at 60 °C. The catalytic activities of these complexes for the ROP of VL were observed to be in order of the ionic radii of the metals: 1(La) ≥ 2(Pr) ≥ 3(Nd) > 4(Sm) > 5(Y) > 6(Yb). The obtained polymers were demonstrated to be hydroxy-telechelic by 1H NMR and MALDI-TOF MS spectroscopy. The controlled ROP of d,l-LA also proceeded by these complexes. The activities of these complexes for the d,l-LA ROP were also in order of the ionic radii of the metals.  相似文献   

20.
In this paper, we explore the effects of hydroxyapatite microparticles and nanoparticles on the thermal and dynamic mechanical properties of injection moulded bioresorbable poly-l-lactide/hydroxyapatite composites intended for use in orthopaedics. The Tg of the nanocomposites were lower than those of the microcomposites. This was thought to be due to the larger surface area of well dispersed nanoparticles in the polymer matrix, leading to a larger interfacial area. The as-moulded composites were largely amorphous, however, during thermal analysis the polymer in the nanocomposites crystallized more and had lower cold crystallization temperature than that in the microcomposites since the nanoparticles acted as more effective nucleating agents. The storage moduli at 37 °C of the nanocomposites were higher than those of the microcomposites. The storage moduli of the composites approached the lower range of storage modulus for cortical bone and may prevent stress shielding during bone regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号