首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is little information in the literature about what constitutes an acceptable instant noodle. To ascertain the commercial acceptability of superheated steam-processed instant noodles, a sampling of commercial products was undertaken. Noodles processed at a steam velocity of 1.5 m/s and at 125°C for 200 s, 130°C for 167 s, 135°C for 150 s, 140°C for 133 s, 150°C for 100 s, and a steam velocity of 1.0 m/s and 150°C for 133 s had acceptable color values (L? values greater than 63, a? values less than 0, and b? values above 20) and moisture at or below the safe storage limit. Superheated steam processed noodles were more firm and chewy than the commercial noodles. Adhesiveness, springiness, and resilience were generally the same for all noodle products. Breaking strength of superheated steam processed noodles was in the same range as the fried control and commercial products. Values varied from a low of 1121 ± 194 g/mm2 for noodles processed at 150°C, 1.5 m/s, for 100 s to a high of 1575 ± 329 g/mm2 for noodles processed at 140°C, 1.5 m/s, for 133 s. Starch gelatinization was greatest in the fried control samples and the least in the superheated steam processed samples (approximately 9% less).  相似文献   

2.
Asian noodles were simultaneously cooked and dried in superheated steam at temperatures from 110 to 150°C and steam velocities of 0.5, 1.0, and 1.5 m/s. Textural and key physical properties of color, breaking stress, and starch gelatinization were measured to ascertain the effects of the superheated steam processing. Textural properties of adhesiveness, springiness, cohesiveness, chewiness, resilience, and hardness determined from a TPA were found to be generally unaffected by steam velocity. All properties but springiness increased with an increase in processing time. Increasing temperature decreased adhesiveness, springiness, cohesiveness, and resilience but increased hardness and chewiness to a small degree. Processing time greatly affected noodle color, resulting in browning at greater processing times. Results show that velocity was not a significant factor (p > 0.05) on the breaking strength of noodles. Temperature was only significant (p < 0.05) at 110 and 120°C and breaking stress decreased with increasing temperature. There were small decreases in breaking stress with processing time. Combined gelatinization of both amylopectin and amylose was an average of 80.5% for all superheated steam processed samples.  相似文献   

3.
A series of drying experiments was performed in a reduced-pressure superheated steam fluidized bed, employing pepper seed particles and some novel data were obtained. Experiments were carried out using different chamber pressures (40–67 kPa), temperatures (90–122°C), steam velocities (2.35–4.10 m/s), and mass flow rates (0.0049–0.0134 kg/s). In the majority of the experiments, the moisture gain observed in some other studies in the warm-up period of the process was prevented through some supplementary heat provided to the column. The drying rate was found to be increasing by operating temperature; however, it was not affected much by the superficial gas velocity and the operating pressure. Nevertheless, the reduced pressure operation increases the degree of superheating that appears as the most important parameter of the process. The experimental results showed that the equilibrium moisture content decreases by the increasing degree of superheating. On the other hand, the critical moisture content assumes higher values for the greater degrees of superheating. It was concluded that a relatively lower temperature process can be achieved through a reduced-pressure superheated steam fluidized bed.  相似文献   

4.
《Drying Technology》2013,31(7):1419-1434
ABSTRACT

Drying of porous solids was experimentally investigated in superheated steam as well as in air. Drying rate curves, including critical moisture contents, in steam at subatmospheric pressure, were compared to those for air at atmospheric pressure; moreover, they were compared to those for steam at atmospheric pressure as well. The former comparison was carried out under conditions of sample temperatures of 41.8–42.5°C (which were nearly equal to saturation temperatures of 42.1–42.2°C at pressures of 8.23–8.30 kPa) for the constant rate period in steam and the corresponding sample temperatures of 42.0–45.0°C (which were close to the wet-bulb temperatures) for the constant rate period in air. There were distinct differences between normalized drying rate curves, including critical moisture contents in steam and in air at the above similar sample temperatures for materials of baked clay, firebrick, and cemented glass balloons over the minimum value of 8.3 × 10?3 µm and up to the maximum value of 1.2 × 102 µm in cumulative pore-size distributions: longer constant rate periods and lower critical moisture contents in steam than in air, and higher drying rates in steam than in air for the falling rate period. Moreover, the latter comparison of the drying rates in steam at subatmospheric pressure to those in steam at atmospheric pressure revealed that the differences in normalized drying rates between subatmospheric pressure and atmospheric pressure were small for both materials under mild external conditions. These findings were common to the baked clay, firebrick, and cemented glass balloons over a wide range of pore-size distributions studied in the present work, as well as sintered coarse glass beads as previously reported.  相似文献   

5.
Drying characteristics of coriander seed particles were experimentally analyzed in a reduced pressure superheated steam fluidized bed. The typical moisture gain, reported in some other studies during the warm-up period of the process, was reduced in most of the cases by supplying additional heat into the column. The experimental results demonstrated that the drying rate increases and the equilibrium moisture content decreases by increasing the operating temperature. However, variation of the operating pressure (40–67 kPa) and the superficial steam velocity (2.3–4.0 m/s) did not present significant effects on the moisture contents. The degree of superheating was found to be the most important parameter for the process. The experiments also showed that the equilibrium moisture content decreases upon increasing the degree of superheating. Finally, employing a reduced pressure superheated steam fluidized bed appears as an option to carry out drying processes at relatively lower temperatures.  相似文献   

6.
S. Pang  M. Dakin 《Drying Technology》2013,31(6):1135-1147
Abstract

Two charges of green radiata pine sapwood lumber were dried, either using superheated steam under vacuum (90°C, 0.2 bar abs.) or conventionally using hot moist air (90/60°C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air.

The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying. Wood temperatures in superheated steam drying were lower.  相似文献   

7.
ABSTRACT

The work considers the application of the flash drying to the moisture removal of fishmeal using superheated steam as transport medium. Heat, momentum and mass transfer equations were applied and an algorithm based on these equations was developed and solved. The model was validated using experimental data obtained in a pilot pneumatic dryer ( total length 60 m) provided with a steam jacket to maintain the superheated steam at a constant temperature. The drying time was less than 10 s to decrease the fish meals moisture content from 53.5% to 28% d.b. and in a second pass by the dryer the moisture down to 16.9% using superheated steam at It 1 ° C and 130 ° C in the jacket. The computational results are in agreement with the experimental data.  相似文献   

8.
Initial condensation on the sample surface during superheated steam (SS) drying leads to increased sample moisture affecting its mechanical and thermal properties. A study was conducted to understand the effect of temperature and velocity of SS on the amount of initial condensation on distillers’ spent grain pellets with an initial moisture content of 25% (wet basis). These pellets were dried using SS at 120, 150, and 180°C with velocities 0.5, 1.0, 1.2, and 1.4 m/s. Separate experiments were conducted for recording mass and surface temperature of the pellets during SS drying. Mass recorded over the drying period was then compared with the predicted mass obtained by solving the standard heat balance and film condensation equations. The predicted values of mass flux due to initial condensation were in close agreement with directly measured values with a maximum mean square error of 0.20. There was a 60–64% decrease in the amount of initial condensation as the temperature of SS was increased from 120 to 180°C. The results indicate that the initial condensation can be minimal when the temperature of SS is equal or above 180°C with SS velocity equal or above 1 m/s using a preheated drying chamber.  相似文献   

9.
Conventional drying of the fibers from oil palm empty fruit bunches (EFB) using flue gas from diesel burners frequently causes browning and dust explosion. Replacing the drying medium with superheated steam is expected to improve the quality of EFB fibers as well as improve the safety of the dryer operation. In this study, the effects of steam temperature and steam velocity on the quality of steam–dried EFB fibers was investigated. The drying experiment was carried out at atmospheric pressure with steam superficial velocity in the range of 0.3 to 0.49 m s?1 and temperature in the range of 135 to 200°C. Three quality parameters of the EFB fibers, the color, strength, and microstructure, were used to assess the changes in EFB fiber quality as a result of superheated steam drying. The color of the EFB fiber was either improved or not significantly degraded. The strength of the superheated steam–dried EFB fibers was higher than that of undried and hot air–dried EFB fibers. The microstructure of fresh undried EFB fibers as seen by scanning electron microscopy (SEM) showed the presence of round silica particles of 10–20 µm in diameter all over the EFB fiber strand, which complicates pulping and bleaching. Superheated steam drying successfully removed the silica particles from the EFB fibers at temperatures of at least 200°C and a velocity of steam of at most 0.49 m s?1, which is better than hammering, which can only remove 88% of the silica particles. The high temperature of the superheated steam loosened the silica particles from their craters. The EFB fibers cracked and split at steam velocities at or above 0.49 m s?1 and high superheated steam temperatures at or above 200°C and as a consequence became weaker at these conditions. The removal of silica particles by superheated steam drying makes the EFB fiber amenable to pulping and bleaching. Superheated steam drying is therefore found to improve the overall quality of EFB fibers compared to hot air drying.  相似文献   

10.
《Drying Technology》2013,31(8):1869-1895
Abstract

The use of a fluidized bed dryer with a lateral air flow and mechanical agitation to the drying of sludge from a wastewater treatment plant was investigated. Experimental curves of moisture content vs. drying time, as well as heat transfer coefficients and the size characteristics of the products, were determined at temperatures between 80°C and 110°C, a stirring rate of 55 rpm and air velocity of 0.9 m/s for 3 kg sludge batches with initial moisture contents of 0.55 and 0.65 (d.b.). Experimental drying kinetics were compared with values derived from three models based on Fick's second law, namely: the constant diffusivity model, the simplified variable diffusivity model, and the modified quasi-stationary model.  相似文献   

11.
S. Pang  M. Dakin 《Drying Technology》1999,17(6):1135-1147
Two charges of green radiata pine sapwood lumber were dried, either using superheated steam under vacuum (90°C, 0.2 bar abs.) or conventionally using hot moist air (90/60°C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air.

The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying. Wood temperatures in superheated steam drying were lower.  相似文献   

12.
The work considers the application of the flash drying to the moisture removal of fishmeal using superheated steam as transport medium. Heat, momentum and mass transfer equations were applied and an algorithm based on these equations was developed and solved. The model was validated using experimental data obtained in a pilot pneumatic dryer ( total length 60 m) provided with a steam jacket to maintain the superheated steam at a constant temperature. The drying time was less than 10 s to decrease the fish meals moisture content from 53.5% to 28% d.b. and in a second pass by the dryer the moisture down to 16.9% using superheated steam at It 1 ° C and 130 ° C in the jacket. The computational results are in agreement with the experimental data.  相似文献   

13.
ABSTRACT

The drying of paper under impinging jets of superheated steam and air during the falling rate period was investigated in the range of jet temperatures 150 < Tj < 450oC and basis weights 30 < B < 150 g/m2. The equilibrium moisture content of Kraft and TMP paper was measured. The adsorption energy of water on pulp fibers near the boiling point appears lower than the value extrapolated from Prahl s (1968) measurements made in air at lower temperatures. The critical moisture content was determined for superheated steam and air impingement drying. Complete drying rate - moisture content histories are presented for a series of typical conditions.  相似文献   

14.
《Drying Technology》2013,31(8):2063-2079
A new drying method of combined superheated steam and microwave drying is being proposed. The drying rates of sintered glass beads in combined superheated steam and microwave drying are experimentally and theoretically investigated. Drying experiments have been carried out in a waveguide where a standing wave is formed to uniformly heat a small sample. Concerning drying rate curves in combined superheated steam and microwave drying, a distinct constant rate period has been observed. For the falling rate period, high drying rates have been observed. For both periods, the drying rates in combined superheated steam and microwave drying are higher than those in superheated steam alone. Also, in comparison with the results of combined nitrogen and microwave drying, the normalized drying rates in combined superheated steam and microwave drying are higher than those at less than the critical moisture content in combined nitrogen and microwave drying. Moreover, theoretical drying rates for the falling rate period (predicted by a modified receding evaporation front model) in combined superheated steam and microwave drying, are in good agreement with the observed drying rates. The combined superheated steam and microwave drying method can attain higher drying rates under mild external conditions.  相似文献   

15.
《Drying Technology》2013,31(5):899-916
Abstract

A thin-layer superheated steam drier was constructed with the objective of determining the drying characteristics, drying rates, and the effect of superheated steam on product quality in thin-layers. Results from superheated steam drying experiments with sugar-beet pulp, potatoes, Asian noodles, and spent grains indicate that drying times and rates increase with increasing steam temperature. For sugar-beet pulp it was also found that these changes were more significant than increases seen by hot-air drying under the same conditions and that drying rates were not affected by velocity for hot air but were increased for superheated steam. When quality aspects were examined, superheated steam dried Asian noodles saw both beneficial changes to recovery, adhesiveness, and gumminess while parameters of maximum cutting stress, resistance to compression, and surface firmness saw deleterious effects. Spent grains saw high levels of starch gelatinization and retention of fibre content.

  相似文献   

16.
In this study, the effects of drying medium temperature and velocity were surveyed on the image texture features of shrimp (Penaeus spp.) batches in a dryer equipped with a perpendicular dual-view computer vision system (CVS). This was carried out by applying an innovative rotation- and scale-invariant image texture processing approach with the capability of eliminating the effects of sample shrinkage on the visual textural features. Moreover, the variations in image texture parameters were investigated with moisture ratio, color, and geometrical characteristics of the shrimp samples. Drying experiments were conducted at hot air drying (HAD) temperatures of 50–90°C and superheated steam drying (SSD) temperatures of 110–120°C with drying medium velocities of 1–2 m/s. Several configurations of a multilayer perceptron artificial neural network (MLP-ANN) were also used to predict the moisture ratio and the geometrical characteristics of the shrimp batch using the image texture parameters. Generally, the image texture features were significantly affected by drying medium temperatures (p < 0.01), and the effects of drying medium velocities on the textural properties were nonsignificant (p > 0.05). Additionally, the higher drying temperatures generated products with uniform and regular texture patterns. The SSD produced samples with somewhat nonuniform and irregular texture patterns compared with HAD at 90°C. Finally, selected MLP-ANN topologies successfully predicted the moisture ratio and the geometrical characteristics of the shrimp batch using the textural properties with correlation coefficients higher than 0.99.  相似文献   

17.
《Drying Technology》2013,31(7):1427-1444
ABSTRACT

The release of volatile organic components (VOC) during the drying of wood chips was studied experimentally. The drying medium was hot dry air with a pressure of 1 bar and velocity of 1 m/s. Four different temperature levels of the drying medium, i.e., 120, 140, 160 and 180°C, and two different materials, Scots Pine and Norway Spruce, were investigated. It was found that the main components released consist of various types of monoterpenes, with α-pinene dominating in each of the two materials. The amount released is time-dependent, showing a maximum at shorter times. The release rate is more intensive at higher drying temperatures. The mass-balance for α-pinene was checked by comparing the amount present in the wood chip before and after drying with the amount obtained by integrating the release curve. A good agreement was obtained. Environmental Scanning Electron Microscope pictures were taken of both the spruce and pine chip in order to investigate differences in the wood structure before and after drying with air at 160°C. No obvious structural change could, however, be observed. The influence of the drying medium on the release rate of monoterpenes (air and superheated steam) was also studied. The results showed that the release rate was faster when drying with superheated steam.  相似文献   

18.
A thin-layer superheated steam drier was constructed with the objective of determining the drying characteristics, drying rates, and the effect of superheated steam on product quality in thin-layers. Results from superheated steam drying experiments with sugar-beet pulp, potatoes, Asian noodles, and spent grains indicate that drying times and rates increase with increasing steam temperature. For sugar-beet pulp it was also found that these changes were more significant than increases seen by hot-air drying under the same conditions and that drying rates were not affected by velocity for hot air but were increased for superheated steam. When quality aspects were examined, superheated steam dried Asian noodles saw both beneficial changes to recovery, adhesiveness, and gumminess while parameters of maximum cutting stress, resistance to compression, and surface firmness saw deleterious effects. Spent grains saw high levels of starch gelatinization and retention of fibre content.  相似文献   

19.
Soy sauce residue needs drying to avoid fermentation and oxidation during storage and transportation, and its reutilization as a useful resource is expected. Superheated steam drying was applied to investigate the effects of drying conditions on the drying characteristics and the content changes of salt and protein. The results showed that the inversion temperature was about 130°C, beyond which superheated steam drying was faster than hot air-drying. The drying time approaching equilibrium moisture content was reduced with elevated drying temperature as well as higher steam mass flow rate in the present experimental conditions. The effect of bed thickness on drying time was not obvious when drying temperature increased. Interestingly, the salt content of soy sauce residue could be decreased by 34.8% due to condensate water in the initial drying period (wetting), while protein content had no significant loss (p?相似文献   

20.
Distillers' spent grain pellets were prepared from material with an initial moisture content of 25% (wb). These pellets were dried in pairs using superheated steam at 120°C in two orientations, horizontal and vertical. The drying characteristics, modeled by the Page equation, showed that there was a significant difference between orientations. The overall moisture diffusivity was calculated using a finite cylinder model based on Fick's law of diffusion accounting for a change in dimensions over the course of drying. The overall diffusivity values ranged from 4.08 × 10?10 to 1.48 × 10?8 m2/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号