首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drying is one of the most common methods for processing and preserving squids. A novel forced convective dryer based on infrared heating was developed with an online temperature control. By setting the drying medium temperature of 50°C, we studied the effects of infrared wavelength and air velocity on drying characteristics of the shredded squid and qualities of dried squid products. We also compared it with the conventional hot-air drying (HAD) and advanced microwave vacuum drying (MVD). The infrared heating rate increase was faster than that of HAD. The heating and drying at the wavelength of 2.5–3.0 µm were more effective than those at the infrared wavelength of 5.0–6.0 µm. Specific energy consumption linearly increased with the air velocity. Microstructure observation showed that the infrared-dried rehydrated sample displayed a muscle fiber structure similar to the fresh sample. The infrared-dried squids had less drying shrinkage, brighter color, and better rehydration capacity than HAD products. Their sensory qualities were better than HAD and MVD products. Above all, infrared drying with wavelength of 2.5–3.0 µm and air velocity of 0.5 m/s was suggested as the best drying condition for squids in this study.  相似文献   

2.
Low-pressure superheated steam drying (LPSSD) has recently been applied to drying of various heat-sensitive foods and bioproducts with success. Several studies have shown that the quality of LPSSD-dried products is superior to that obtained using conventional hot air or vacuum drying. However, drying time and energy consumption for LPSSD is generally greater than that for vacuum drying. Therefore, it is necessary to examine different methodologies to improve the energy efficiency of LPSSD. An intermittent drying scheme is one possible method to reduce the energy consumption of the process while maintaining the desired product quality. In this study, the effect of intermittent supply of energy (through an electric heater and steam injection to the dryer) and vacuum (through the use of a vacuum pump) at various intermittency values or on:off periods (10:5, 10:10 and 10:20 min in the case of intermittent supply of energy and 5:0, 5:5, and 5:10 min in the case of intermittent supply of vacuum) at the on-period setting temperatures of 70, 80, and 90°C on the drying kinetics and heat transfer behavior of the drying samples (banana chips) was studied. The effects of these intermittent drying schemes and conditions on the quality parameters of dried banana chips; i.e., color, shrinkage, texture, and ascorbic acid retention, were also studied. Finally, the energy consumption values for intermittent LPSSD and vacuum drying were monitored through the effective (or net) drying time at various intermittent drying conditions and compared with those using continuous LPSSD and vacuum drying.  相似文献   

3.
The drying characteristics of restructured wild cabbage chips dried using microwave vacuum (MVD), hot air (AD), and microwave freeze drying (MFD) were compared. Some of the key quality parameters of restructured wild cabbage chips such as fracturability and color and sensory characteristics were measured. Results showed that the drying time was reduced with the increase of microwave power (MVD/MFD) and in the case of air drying by the temperature (AD). Drying time was the shortest in the MVD process. Optimal quality of dried chips was obtained with the MFD process at a microwave power level 2.0 W/g.  相似文献   

4.
This article presents experimental results and analysis of four drying methods, viz. hot air drying (AD), hot air-assisted radio frequency drying (ARFD), infrared drying (IRD), and microwave-assisted hot air drying (MAD), on color, microstructure, density, rehydration capacity, and texture after rehydration of stem lettuce slices (Lactuca sativa L.). The drying time required for these drying protocols was also compared. These four drying tests were conducted at fixed air temperature (60°C) and velocity (1 m/s), as well as identical sample load (300 g), bed depth (20 mm), and the power level for ARFD, IRD, and MAD, which was fixed at 4 W/g. The results showed that the drying time required for stem lettuce slices using ARFD was the shortest (120 min), followed by MAD (140 min) and IRD (180 min); AD required the longest time (360 min). Notably, ARFD yielded uniform drying and the quality of the dried samples using ARFD was also the best among these four drying methods.  相似文献   

5.
The effects of three different drying methods (e.g., intermediate infrared-assisted convection drying, low-frequency (915 MHz) microwave drying, and hot-air drying) on the quality of squid cubes were investigated. The quality parameters used to evaluate the drying efficiency were color, shrinkage, rehydration ratio, and hardness of the final dried products. The results showed that intermediate infrared-assisted convection drying and low-frequency microwave drying have the advantages over hot-air drying in terms of drying rate, shrinkage percentage, and rehydration ratio. Low-frequency microwave-dried samples displayed a puffed structure and their hardness was the highest. The intermediate-wave infrared-assisted convection drying, at 60°C, was identified as the best method for squid-cube drying in this study.  相似文献   

6.
Combined Microwave-Vacuum and Freeze Drying of Carrot and Apple Chips   总被引:1,自引:0,他引:1  
A combination of microwave-vacuum (MWV) drying and freeze drying was investigated as potential means for drying carrot and apple chips. The sample was first dried by microwave-vacuum to dehydrate some amount of internal free water and then by freeze drying to a final moisture content of less than 7% (wet basis). Chemical properties (carotene and vitamin C retention) and physical properties (shrinkage, color, texture, and rehydration ratio) of carrot and apple slices dried by this method were evaluated and compared with those dried by freeze drying alone, MWV drying alone, and conventional hot air drying, respectively. The comparison showed that the carotene retention of carrot slices and the vitamin C retention of apple slices dried by the current method were close to those of freeze-dried carrot and apple slices and much better than those of conventional hot air–dried ones. The samples prepared by the current method exhibited very close rehydration capacity, color retention, and texture with those of the freeze-dried ones but with a little higher shrinkage. However, the samples still showed the attractive external appearance without marked warp.  相似文献   

7.
Electrohydrodynamic (EHD) drying is a novel method of nonthermal drying. A corona discharge using multiple electrodes and a high-voltage electric field of 5.2 kV · cm?1 was produced to investigate the drying enhancement of carrot slices and its effect on color and shrinkage. The EHD setup consisted of 13 stainless steel needle points connected to a DC power supply and a stainless steel plate. EHD+ drying, EHD? drying, oven drying at 55°C, and ambient air drying control at 25°C for 5 h resulted in 79.5, 77.7, 77, and 22.5% total moisture removal from the fresh carrot slices, respectively. The final shrinkage of the EHD± drying was less than that of oven drying but was higher than that of ambient air drying. It was estimated that the energy consumption of oven drying was several times greater than those of EHD± drying. The conventional drying processes changed all color parameters, whereas the color for EHD± dried samples remained almost the same. The carrot slices’ temperature during drying by EHD± was significantly less than that of those dried by oven and ambient air drying.  相似文献   

8.
The kinetics of combined hot-air/infrared thin-layer drying of paddy was studied. The mechanical quality aspects of paddy kernels dried at different drying conditions were evaluated in terms of percentage of cracked kernels and also required failure force obtained from bending tests. The well-known Artificial Neural Network (ANN) modeling technique was applied to predict the drying time, variations in paddy moisture content, the percentages of cracked kernels, and the values of required failure force of paddy at different drying conditions. The best ANN topologies, transfer functions, and training algorithms were determined for prediction of the mentioned parameters. In addition to the product quality aspects, the specific energy consumption (SEC) was estimated for all drying conditions. The results indicated that application of a low-intensity IR radiation (2000 W/m2), together with lower values of inlet air temperature (30°C) and moderate values of inlet air velocity (0.15 m/s), can effectively improve the final quality of paddy (as a heat-sensitive product) with a reasonable SEC.  相似文献   

9.
《Drying Technology》2013,31(4):759-778
Abstract

An innovative two-stage drying concept is presented in this article. The work considered drying of shrimp using a superheated steam dryer followed by a heat pump (SSD/HPD) or a hot air dryer (SSD/AD) both from drying kinetics and dried product quality points of view. The experiments were performed using the first-stage superheated steam drying temperature of 140°C while the second-stage heat pump drying (or hot air drying) was performed at 50°C. The moisture content of shrimp at the end of the superheated steam drying stage was varied between 30 and 40% (w.b.). The effect of tempering between SSD/HPD was also investigated. Shrinkage, color, rehydration behavior, texture (toughness and hardness), and microstructure of dried shrimp were measured. The results showed that SSD/HPD dried shrimp had much lower degree of shrinkage, higher degree of rehydration, better color, less tough and softer, and more porous than single-stage SSD dried shrimp. It was also found that SSD/AD gave redder shrimp compared to shrimp dried in a single-stage superheated steam dryer. No improvement in terms of shrinkage and rehydration behavior was observed, however.  相似文献   

10.
The drying of carrot particles (6 mm × 6 mm × 12 mm) was studied in a tunnel dryer; a vacuum-freeze dryer, either with or without infrared radiation; a pulsed fluidized-bed dryer assisted by microwave radiation; and combinations of these methods. The effect of two freezing rates (quick freezing in liquid nitrogen and slow freezing in a household freezer) was also studied.

The drying kinetics for these drying methods were determined and modeled, and the dried products were subjected to texture (hardness), color, and rehydration analysis, as well as 2D and 3D image analysis of pictures from scanning electron microscope.

The combination of freeze drying with other dehydration techniques reduces the drying time by 6–70%, although, in general, the structural damage increases with respect to freeze drying alone. The hybrid drying systems did not show significant differences in drying times either for quick- or slow-frozen samples. The combination of freeze drying followed by conventional drying reduces the drying time between 23 and 40% on average.

The Page empirical model represents adequately the entire drying process for combined methods, with specific parameters for each drying zone. The values of effective diffusivity calculated with the simplified constant diffusivity model agree with those reported in the literature.  相似文献   

11.
This articles provides results of an experimental investigation of three hybrid drying technologies on the drying characteristics and key quality parameters of shiitake mushroom (Lentinus edodes). The drying techniques tested at the laboratory scale are mid-infrared-assisted convection drying (MIRCD), hot air coupled with radio frequency drying (HCRFD), and hot air coupled with microwave drying (HCMD). For comparison, the standard drying technique using hot air was also tested. The quality parameters include texture, color, rehydration rate, shrinkage, nutrient retention, microstructure, etc. These four drying tests were conducted at fixed air temperature (60°C), and the power level for HCRFD, MIRCD, and HCMD was fixed at 4 W/g. The results showed that hot air coupled with microwave drying gave the shortest drying time, and mid-infrared-assisted convection and hot air coupled with radio frequency drying showed better color attributes and nutrient retention. Under the conditions tested, mid-infrared-assisted convection drying yielded minimal shrinkage (maximal rehydration) and lower hardness upon rehydration. The uniform honeycomb network and less collapsed structure of MIRCD samples can be used to explain these better quality characteristics.  相似文献   

12.
The aim of the work was to develop an optimized routine for apple drying. The interaction of the drying parameters air temperature (35–85°C), dew point temperature (5–30°C), and air velocity (2.0–4.8 m/s) with drying time, color changes, and shrinkage was determined. Non-invasive online measurement techniques in the form of artificial vision systems in visible and infrared spectrum were developed and applied to guarantee an uninterrupted process. Quantification methods for the determination of color and shape changes of apple slices were established based on the images taken.

Results show that digital images are a feasible alternative for the monitoring of the relative changes in L* (R2 = 0.92, p < 0.001), a* (R2 = 0.96, p < 0.001), and b* (R2 = 0.96, p < 0.001) during the drying of apples. It was observed that the color parameters as a function of moisture content follow a third-order development while shrinkage was linear (p < 0.001). The developed models for drying time tdr (R2 = 0.99, p < 0.001), Total Color Difference ΔE (R2 = 0.95, p < 0.001), and shrinkage S (R2 = 0.68, p < 0.05) illustrate high interdependencies of the factors involved for the quality criteria studied. Throughout the parameter space investigated, increasing air velocity was shown to have a positive effect on the quality criteria investigated.  相似文献   

13.
The drying characteristics and properties (color and shrinkage) of carrots (as a representative agricultural product) were experimentally examined in a fluidized bed under reduced pressure. Dry hot air and superheated steam were used as the drying gases. Rice and carrot powders (0.125–0.355 mm in diameter) were used as the fluidizing particles, in addition to glass beads (0.12 mm in diameter).

It was confirmed that the drying rate using a fluidized bed was much higher than without a fluidized bed (hot-air drying), regardless of the type of fluidizing particles used. Under reduced pressure, both with and without a fluidized bed, the drying rate was higher than that at atmospheric pressure using hot air. The drying rate was sufficiently high for fluidized-bed drying with superheated steam, though the drying rate was higher with hot air than with superheated steam. As the drying temperature increased, the volume ratio (befor/after drying) of the sample increased. At high drying temperatures (373 and 423 K in the present study), the color of the sample changed; in other words, a heat-induced change in the properties of the carrot was observed. At a low drying temperature (333 K in the present study), the drying method did not affect the color of the carrot; i.e., the color of the dried material was maintained even in a fluidized bed under reduced pressure when the drying rate was higher.  相似文献   


14.
An innovative two-stage drying concept is presented in this article. The work considered drying of shrimp using a superheated steam dryer followed by a heat pump (SSD/HPD) or a hot air dryer (SSD/AD) both from drying kinetics and dried product quality points of view. The experiments were performed using the first-stage superheated steam drying temperature of 140°C while the second-stage heat pump drying (or hot air drying) was performed at 50°C. The moisture content of shrimp at the end of the superheated steam drying stage was varied between 30 and 40% (w.b.). The effect of tempering between SSD/HPD was also investigated. Shrinkage, color, rehydration behavior, texture (toughness and hardness), and microstructure of dried shrimp were measured. The results showed that SSD/HPD dried shrimp had much lower degree of shrinkage, higher degree of rehydration, better color, less tough and softer, and more porous than single-stage SSD dried shrimp. It was also found that SSD/AD gave redder shrimp compared to shrimp dried in a single-stage superheated steam dryer. No improvement in terms of shrinkage and rehydration behavior was observed, however.  相似文献   

15.
Ilknur Alibas 《Drying Technology》2013,31(11):1266-1273
Collard leaves (Brassica oleracea L. var. acephala) with an initial moisture content of 6.65 on percentage dry basis (%db) were dried by three different drying methods: microwave, air, and vacuum. Samples of fresh leaves, 25 g each, were dried until their moisture was down to 0.1 on a dry basis. The following drying levels were used in each of the drying processes: 350, 500, 650, 750, 850, and 1000 W for microwave drying; 50, 75, 100, 125, 150, and 175°C for air drying; and 0.4, 50, and 100 mmHg at 50 and 75°C for vacuum drying, respectively. Drying times ranged between 2.5 to 7.5 min, 8 to 210 min, and 35 to 195 min for microwave, air, and vacuum drying, respectively. The data obtained compared well with a thin-layer drying model. Microwave drying at 750 W provided optimal results with respect to drying time, color, and ascorbic acid content (vitamin C).  相似文献   

16.
ABSTRACT

Low-fat snack products are the driving forces for the drying of tortilla chips before frying. Super-heated steam impingement drying of foods has the advantage of improved energy efficiency and product quality. The temperature profile, drying curves, and the physical properties (shrinkage, crispiness, starch gelatinization and microstructure) of tortilla chips dried at different superheated steam temperatures and heat transfer coefficients were measured. Results indicated that the steam temperature had a greater effect on the drying curve than the heat transfer coefficient within the range of study. The microstructure of the samples after steam drying showed that higher steam temperature resulted in more pores and coarser appearance. The modulus of deformation and the shrinkage of tortilla chips correlated with moisture content. A higher steam temperature caused less shrinkage and a higher modulus of deformation. The pasting properties showed that samples dried under a higher steam temperature and a higher heat transfer coefficient gelatinized less during drying and had a higher ability to absorb water. Comparison of the superheated steam drying and air drying revealed that at elevated temperatures the superheated steam provided higher drying rates. Furthermore, there was a less starch gelatinization associated with air drying compared to superheated steam drying.  相似文献   

17.
Drying experiments on kelp (seaweed species) were conducted using air drying (AD) and infrared radiation drying (IRD) at different emission peak wavelengths of 2.4, 3.0, 5.0, and 6.0 µm. Temperature characteristics of the dried kelp were determined in terms of temperature distribution and surface–interior temperature variation. Rehydrated ratio, color, and texture before and after rehydration were measured to evaluate the quality of dried kelp products. Dielectric properties were also studied to observe the characteristics of rehydrated dried products. The results indicated that the total drying time required for IRD products was approximately 120 min, reduced by 56% compared to AD (275 min). Infrared-dried products at 2.4 μm wavelength and AD products were found to be more uniform from the thermal images and had higher rehydration ratios compared to others. IR-2.4 rehydrated products were the closest to blanched samples in hardness, springiness, cohesiveness, and chewiness. This research work concluded that infrared radiation drying has potential to be used for drying of kelp.  相似文献   

18.
《Drying Technology》2013,31(7):1369-1381
Abstract

Freshly harvested rosehips (Rosa canina L.) were dehydrated in a parallel flow type air dryer at six air temperatures (30, 40, 50, 60, and 70°C) at air velocities of 0.5, 1.0, and 1.5 m/s. Drying air temperature and velocity significantly influenced drying time and energy requirement. Minimum and maximum energy requirement for drying of rosehips were determined as 6.69 kWh/kg for 70°C at 0.5 m/s, and 42.46 kWh/kg for 50°C, 1.5 m/s. In order to reduce drying energy consumption, it is recommended that the drying air velocity must not be more than 0.5 m/s and drying air temperature should be 70°C. In addition, the influence of drying air temperature and air velocity on the color of dried rosehip has been studied. Hunter L, a, b values were used to evaluate changes in the total color difference (ΔE) on dried rosehips. 70°C drying air temperature and 1 m/s air velocity were found to yield better quality product.  相似文献   

19.
A lab model vacuum-assisted solar dryer was developed to study the drying kinetics of tomato slices (4, 6, and 8 mm thicknesses) compared with open sun drying under the weather conditions of Montreal, Canada. The drying study showed that the time taken for drying of tomato slices of 4, 6, and 8 mm thicknesses from the initial moisture content of 94.0% to the final moisture content of around 11.5 ± 0.5% (w.b.) was 360, 480, and 600 min in vacuum-assisted solar dryer and 450, 600, and 750 min in open sun drying, respectively. During drying, it was observed that the temperature inside the vacuum chamber was increased to 48°C when the maximum ambient temperature was only 30°C. The quality of tomato slices dried under vacuum-assisted solar dryer was of superior quality in terms of color retention and rehydration ratio. The drying kinetics using thin-layer drying models and the influence of weather parameters such as ambient air temperature, relative humidity, solar insolation, and wind velocity on drying of tomato slices were evaluated.  相似文献   

20.
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s?1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm?2 at an air velocity of 0.5 m/s?1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20–4.52 × 10?11 m2 s?1 and 3.04–4.79 × 10?11 m2/s?1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号