首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of peanut drying parameters, such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts, and kernel moisture content, is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to preserve quality and desired flavor. In the current peanut-drying process, such parameters are elusive in real time and are either not measured or only measured periodically by an operator. A peanut-drying monitoring system, controlled by an embedded microcontroller and consisting of relative humidity and temperature sensors and a microwave peanut moisture sensor, was developed to monitor drying parameters in real time. It was deployed during the 2014 peanut harvest season at a peanut buying point in central Georgia, USA. It was placed in 45-ft (13.7-m) drying semitrailers to monitor in-shell kernel moisture content, temperature of the drying peanuts, temperature, and relative humidity of the exhaust air from the peanuts and relative humidity of the air being blown into the peanuts in real time. In-shell kernel moisture content was determined with a standard error of performance of 0.55% moisture content when compared to the reference oven-drying method. Data from drying parameters were time-stamped and stored on a CompactFlash card every 12?s and were used to assess the efficiency of dryer control settings. Ambient air conditions were measured by an on-site weather station. Results of the study support the value of such a monitoring system and show that implementation of the system for dryer control has the potential for saving a buying point, in the current economical context, as much as $22,000 annually in costs of electric energy and propane.  相似文献   

2.
Thin-layer drying experiments under controlled conditions were conducted for green sweet pepper in heat pump dryer at 30, 35, and 40°C and hot air dryer at 45°C with relative humidities ranging from 19 to 55%. The moisture content of sweet pepper slices reduced exponentially with drying time. As the temperature increased, the drying curve exhibited a steeper slope, thus exhibiting an increase in drying rate. Drying of green sweet pepper took place mainly under the falling-rate period. The Page equation was found to be better than the Lewis equation to describe the thin-layer drying of green sweet pepper with higher coefficient of determination and lower root mean square error. Drying in heat pump dryer at 40°C took less time with higher drying rate and specific moisture extraction rate as compared to hot air drying at 45°C due to lower relative humidity of the drying air in a heat pump dryer though the drying air temperature was less. The retention of total chlorophyll content and ascorbic acid content was observed to be more in heat pump–dried samples with higher rehydration ratios and sensory scores. The quality parameters showed a declining trend with increase in drying air temperature from 30 to 45°C. Keeping in view the energy consumption and quality attributes of dehydrated products, it is proposed to dry green sweet pepper at 35°C in heat pump dryer.  相似文献   

3.
Corn, rice, and wheat seeds with an initial moisture content (IMC) of 20–25% wb were dried to moisture content below 18% wb at 40–80°C in a fluidized bed dryer (FBD) and spouted bed dryer (SBD) and the seeds with IMC 18% wb were dried to below 14% wb at air temperatures 18–30°C and relative humidity 60–70% by an in-store dryer (ISD). As a result, it appears that a two-stage drying concept is feasible in drying high-moisture-content seeds due to the high germination rate of dried seeds. Nonetheless, the drying temperature must be carefully selected. A drying temperature of 40°C was clearly safe for all samples, whereas more than 90% of wheat seeds still germinated after drying at 60°C in FBD. Furthermore, drying seeds with IMC 18% wb by ISD was safe under specified drying conditions.  相似文献   

4.
EXPERIMENTAL RESEARCH ON DRYING CHARACTERISTICS OF LITCHI   总被引:1,自引:0,他引:1  
The changes of inner temperature and drying characteristics of rind, membrane, flesh and stone of Litchi were investigated under constant relative humidity of drying medium at different temperatures at atmospheric and decompression conditions. Results show that the membrane resists moisture from moving the flesh or stone to rind. Decompression drying is helpful to the moisture evaporation of the fruit; when the moisture content lowers to a certain critical point, the drying rate is higher than that of atmospheric drying. Drying curves are very different from those of seeds drying or particle drying. In the drying process, temperature of Litchi whole fruit rises quickly at the beginning to a maximum region, then falls to a minimum before rising again slowly. All the phenomena are due to the composite structure of Litchi.  相似文献   

5.
Drying of water treatment process sludge in a fluidized bed dryer   总被引:2,自引:0,他引:2  
The drying characteristics of water treatment process (WTP) sludge were investigated with a fluidized bed. The equilibrium moisture ratio of WTP sludge increased with relative humidity and decreased with temperature of drying air. However, equilibrium moisture ratio of WTP sludge was more sensitively dependent on relative humidity than temperature of drying air. When the sludge was dried in a batch fluidized bed, the drying rate of sludge decreased as the moisture ratio of sludge in the bed decreased. The periods of constant drying rates were apparently not observed on the drying rate curves. In addition, the maximum drying rates were increased with bed temperature and superficial air velocity. As the fluidized bed was operated continuously, the degree of drying of WTP sludge increased with bed temperature but was weakly dependent on superficial air velocity. However, the drying efficiency was decreased with bed temperature and relatively insensitive to superficial air velocity and increased with feed rate of sludge.  相似文献   

6.
Abstract

The changes of inner temperature and drying characteristics of rind, membrane, flesh and stone of Litchi were investigated under constant relative humidity of drying medium at different temperatures at atmospheric and decompression conditions. Results show that the membrane resists moisture from moving the flesh or stone to rind. Decompression drying is helpful to the moisture evaporation of the fruit; when the moisture content lowers to a certain critical point, the drying rate is higher than that of atmospheric drying. Drying curves are very different from those of seeds drying or particle drying. In the drying process, temperature of Litchi whole fruit rises quickly at the beginning to a maximum region, then falls to a minimum before rising again slowly. All the phenomena are due to the composite structure of Litchi.  相似文献   

7.
ABSTRACT

The drying mechanism and diffusion coefficient of water in spherical droplets (1.73 – 2.08 mm diameter) of tomato concentrates were successfully interpreted and modelled by using Fick's law. Solids content of the initial concentrate (5–15% w/w), and drying temperature (60° – 100° C) were varied but the drying air was kept at constant velocity and humidity.

The effective moisture diffusivity was estimated from the drying rate curves and expressed by an Arrhenius relation. Further, it was observed that case hardening has a large effect on the diffusion process causing the effective diffusional distance and the rate of moisture accumulation in the hardened crust to vary with the moisture content, according to a sorption controlled mechanism.  相似文献   

8.
采用静态法研究了明胶的平衡含湿质量分数,得到了20℃下吸湿和解吸等温线,结果表明,当空气相对湿度在16%—39%,存在吸湿滞后现象。在对流干燥实验台上进行了明胶干燥特性的实验,以不同厚度的明胶块为实验对象研究了热风温度、风速、湿度对干燥过程的影响。实验结果表明:明胶的干燥过程只有降速阶段,提高热风温度、加大风速均可以在前期提高干燥速率,但在干燥后期干燥速率反而降低;明胶块中心温度受胶块厚度、热风温度影响较大,而在实验范围内空气相对湿度的变化对明胶中心温度影响甚微;明胶的相对含湿质量分数随时间呈指数规律下降,提高风温、加大风速后明胶含湿质量分数在开始阶段下降较快,但最终含湿质量分数反而偏高。  相似文献   

9.
Kinetics of hot air drying and heat pump drying were studied by performing various drying trials on salak slices. Isothermal drying trials were conducted in hot air drying and heat pump drying at a temperature range of 40–90°C and 26–37°C, respectively. Intermittent drying trials were carried out in heat pump drying with two different modes: periodic heat air flow supply and step-up air temperature. It was observed that the effects of relative humidity and air velocity on drying rate were significant when moisture content in salak slices was high, whereas the effects of temperature prevailed when the moisture content was low. As such, it was proposed that drying conditions should be manipulated according to the moisture transport mechanisms at different stages of drying in order to optimize the intermittent drying and improve the product quality. Generally, loss of ascorbic acid during drying was attributed to thermal degradation and enzymatic oxidation, whereas the loss of phenolic compounds was mainly due to thermal degradation. Experimental results showed that heat pump drying with low-temperature dehumidified air not only enhanced the drying kinetics but produced a stable final product. Heat pump–dried samples retained a high concentration of ascorbic acid and total phenolic compounds when an appropriate drying mode was selected.  相似文献   

10.
This paper aims to study the influence of temperature and relative humidity (RH) during intermittent heat pump drying at 28.6–40.6°C, 16.2–26.7% RH, α?=?0.2–1.0, and the comparison was made against fan drying (27°C, 39.7% RH, α?=?1.00). It was observed that the effects of temperature and RH on drying rate were significant when moisture content was high. Experimental results showed that intermittent heat pump drying at 28.6°C, 26.7% RH, α?=?0.2 of edible bird’s nest greatly reduced effective drying time by 84.2% and color change compared to fan drying, and retained the good energy efficiency.  相似文献   

11.
ABSTRACT

A batch–type experimental dryer with a computer–aided data acquisition system was designed and built for the thin layer drying studies of onion (Allium cew L., cv. Southport White Globe) slices. Twenty seven single–layer drying curves were established for a temperature range of 42.5–900C, an air velocity range of 0.6–1.4 m/s, an air humidity range of 0.0093–0.0442 kg of water/kg of dry air: and a slice thickness range of 0.002–0.005 m. The single–term exponential model adequately described the single–layer drying behaviour of the onion slices. l'he dependence of the drying rate constant on air temperature, absolute humidity, velocity and on slice thickness was best explained by an Arrhenius–type relationship. The drying rate constant in which moisture diffusion and shrinkage effects are lumped was greatly influenced by the sample thickness and drying air temperature, and to a lesser extent, by the air humidity and velocity.  相似文献   

12.
This paper describes moisture diffusivity, shrinkage, equilibrium moisture content and finite element simulated drying of coffee. The moisture diffusivities in different components of parchment coffee were determined by minimizing the sum of square of deviations between the predicted and the experimental values of moisture contents during thin layer drying under controlled conditions of drying air temperature and relative humidity. The drying of coffee bean and parchment was conducted in thin layers at a temperature of 40, 50 and 60 °C with relative humidity in the range of 14–25%. The mean diffusivity values of coffee bean and parchment are related to the temperatures and are expressed by Arrhenius-type equations. The moisture diffusivities of parchment are lower than those of the coffee bean. The shrinkage of coffee bean derived from experiments is expressed as a function of moisture reduction. GAB model is sufficient for the prediction for sorption isotherm of parchment coffee and the parameters of the GAB model are a function of temperature and it is expressed by Arrhenius-type equations. Sensory evaluation of the coffee dried at 40, 50 and 60 °C shows that the overall acceptance by coffee cupping test and the concentration of caffeine is within the acceptable limit. A two-dimensional finite element model was developed for simulate moisture diffusion during drying process of parchment coffee. The finite element model was programmed in Compaq Visual FORTRAN version 6.5. The model simulates the moisture contents in different components of parchment coffee well and it provides a better understanding of the transport processes in the different components of the parchment coffee.  相似文献   

13.
This study examines how the inlet air temperature, relative humidity, and flow rate influence the textile drying process in an open cycle tumble dryer. An experimental setup was prepared by connecting a domestic tumble dryer to an external system for controlled heating, humidification, and transport of air. Experiments were conducted by drying cotton textiles (8?kg dry mass) at different air inlet conditions. On the basis of measured data, correlations for determination of the total drying time, the moisture evaporation rate during the constant drying rate, and the area-mass transfer coefficient were developed. The process in the drum was modeled by using an established moisture evaporation model, based on sorption isotherms. A commonly used and a recently reported sorption isotherm for cotton were used with the model. Agreement between calculated and measured drying curves was better in case of the commonly used sorption isotherm, but final moisture content was better predicted by the recently reported sorption isotherm.  相似文献   

14.
  ü  krü  KARATA  Ali ESIN 《Drying Technology》1994,12(4):799-822
The drying mechanism and diffusion coefficient of water in spherical droplets (1.73 - 2.08 mm diameter) of tomato concentrates were successfully interpreted and modelled by using Fick's law. Solids content of the initial concentrate (5-15% w/w), and drying temperature (60° - 100° C) were varied but the drying air was kept at constant velocity and humidity.

The effective moisture diffusivity was estimated from the drying rate curves and expressed by an Arrhenius relation. Further, it was observed that case hardening has a large effect on the diffusion process causing the effective diffusional distance and the rate of moisture accumulation in the hardened crust to vary with the moisture content, according to a sorption controlled mechanism.  相似文献   

15.
《Drying Technology》2013,31(7):1637-1660
Abstract

By adopting the central-composite experiment design, the response surface methodology was used to optimize operating conditions of rubber wood drying. The independent variables are initial moisture content of rubber wood, and three drying environment parameters namely, temperature, relative humidity, and air velocity. The investigating responses are final moisture content, drying time, and energy consumption. The restriction of the optimization is the designated final moisture content, which is not greater than 16%. The third-order polynomial models with transformed responses were developed from experiment data to generate 3-D response surfaces and contour plots. The analysis of variance (ANOVA) was performed to identify the significant parameters affecting the rubber wood drying. Drying temperature and holding relative humidity are those two influential operating parameters that significantly control the final moisture of rubber wood and affect the drying time and energy. The multiple contour plots of drying responses show that the optimum operating regions are located mainly at high temperature drying zone. The high temperature drying practice can save energy and drying time by 44 and 25% respectively, in comparison to the conventional temperature drying.  相似文献   

16.
This study aims to experimentally investigate the drying characteristics and quality of a paddy dried by hot air (HA) and humidified hot air (HHA) fluidization technique. Qualities such as head rice yield (HRY), white belly, degree of gelatinization (DSG), and color of dried paddy were evaluated. A paddy with an initial moisture content of 14% d.b. was soaked in hot water at a temperature of 70?°C for 5?h then dried at a temperature of 130,150, and 170?°C, relative humidity in the range of 0.3–12%, an air velocity of 3.9 m/s, and a bed height of 10?cm. The results showed that the drying time of the paddy in the HHA condition took longer than the HA drying condition. Because HHA provided a higher grain temperature and a slow rate of drying, the degree of starch gelatinization was significantly higher when compared to HA. The subsequent HRY was relatively higher than using HA drying. However, the color of the sample obtained from the HHA condition was relatively browner, but the parboiled rice product still had a light brown color for the drying temperature range used in this study. To produce parboiled rice, HHA could be operated up to the temperature of 170?°C, relative humidity of 6%, and DOM of 10%.  相似文献   

17.
The ideal shrinkage model assumes that the extent of shrinkage is equal to the volume of liquid water removed from the dried medium. Generally if a material undergoes glass transition during the drying process, shrinkage will no longer be ideal. The aim of this study was to observe how the glass transition temperature influences the shrinkage kinetics. Cylindrical banana samples were dried. Shrinkage extent was significant for all drying conditions (temperature: 30–50°C, relative humidity: 0–80%). Deviation from linearity was found to be affected not only by drying air temperature but also by its relative humidity.  相似文献   

18.
An even span solar greenhouse dryer was built and applied to dry Java tea (Orthosiphon aristatus) and Sabah snake grass (Clinacanthus nutans Lindau). Findings showed that the solar greenhouse dryer performs satisfactorily during clear weather except at nighttime and rainy day due to product rehydration which is heavily influenced by high relative humidity from ambient air. Integrating of heat pump into the solar greenhouse dryer has successfully reduced the room relative humidity by 10–15%. Also, heat pump has mitigated the product rehydration issue by maintaining room relative humidity at maximum of 65% throughout the drying period. The drying rate of Java tea was improved three to fourfold, i.e., from 0.004–0.008 to 0.018–0.025?g H2O/g DM min, whereas 10% of drying time was saved for both Java tea leaf and Sabah snake grass leaf with the assistance of heat pump system. Meanwhile, the supply of dry air from the heat pump system with a magnitude of 0.25–0.50?m/s helps in enhancing the drying rate of the herbs as well as minimizing the nonuniformity of drying temperature and relative humidity inside the solar greenhouse dryer.  相似文献   

19.
The paper presents new data for thin-layer drying characteristics of Thai long grain rough rice measured under various conditions of drying air temperature (35 to 60 °C), drying air relative humidity (30 to 70 % ) and the initial moisture content of rough rice (20 to 40 % dry basis). Empirical equations were developed using the instantaneous weight, the weight loss and drying time, with temperature, relative humidity and initial moisture content of rough rice as the independent variables. A computer program was developed to simulate the deep-bed drying process. The thin-layer drying equation developed before was used in the computer simulation. Experimental data from the fixed bed dryer were compared with the results from the calculation.  相似文献   

20.
The novel low-cost band thermodynamic dryer equipped with a solar collector, a parabolic focusing collector, a heat exchanger, screw fan, and a drying cabinet with a band was designed and tested. The maximum temperature in the solar collector reached 85°C, which was 55°C above the ambient temperature. The required drying time was 4.5 h, much reduced from the traditional solar drying time of 48 h. The final moisture content of the Roselle calyx was 12% w.b., which is the recommended storage moisture content. Measurements of ambient temperature and humidity, air temperature, and relative humidity inside the dryer as well as solids moisture loss-in-weight data are employed as a means to study the performance of the dryer. Solar drying was compared with conventional sun drying and heated air drying, using the following evaluation criteria: drying time, dried Roselle color, texture, taste, and production cost. For evaluation, a model-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology was used. After the evaluation, the proposed continuous solar dryer was found to be better than conventional drying and heated air drying due to slower drying rate and better quality of the dried Roselle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号