首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an improved configuration of lignite-fueled power plant integrated with a two-stage predrying system was proposed. The predrying system mainly consists of two fluidized-bed dryers and an additional feed water heater. Lignite is dried successively in the exhaust gas dryer and steam dryer. With boiler exhaust gas being the heat source of the first stage dryer, waste heat of a fraction of the boiler exhaust gas can be used. The exhaust gas of the second stage dryer was considered to be water vapor and its latent heat can be recovered by the additional feed water heater. The thermodynamic and economic analysis show that with the lignite drying degree being 0.1, 0.2, and 0.3?kg/kg, the power generation efficiency of the proposed power plant is 1.45, 2.12, and 2.81% higher than that of the conventional lignite power plant, respectively. Moreover, the annual net economic benefit will be 1.34, 2.03, and 1.60 M$/a during the lifetime of the drying system. The annual net economic benefit is not necessarily higher with higher power generation efficiency.  相似文献   

2.
ABSTRACT

Solar–;dehumidification wood drying kilns attract more and more interest due to their energy saving characteristics. However. such dryers are only available for small effective drying volume capacities. less than 30 m3, and for low drying temperature under 65 °C, for Chinese domestic products. In fact, wood drying kilns over 60 m3and high drying temperatures upto 95 °C or even higher are commonly desired from economic and process technology points o f view. For instance, if the drying temperature is below 60 °C. a long drying period will result in high operational costs and may also cause mould as well colour changes on the lumber surface. It is also known that the anti- decay ability of the seasoned lumber is lhus reduced. As such. the design of the solar–dehumidification wood drying kiln with an effective drying volume capacity of 60 m3 and a drying temperature upto 95 0C was made. Two compression processes for dehumidification and heat pump systems were adopted. The refrigerant of R1(2). which has low RODP and RGE, was utilized as the actuating medium. The values of COP. PER and SMER were 4.42. 1.19 and 3.08 kg ( H20) /( kWh) for the dehumidification system. The valucs of COP and PER were 3.05 and 0.824 for the heat pump (heat supply) system. The averaged total COP and PER over the both were 3.74 and 1.01 respectively.  相似文献   

3.
To remove the high moisture of ZhaoTong lignite, the efficient drying characteristics and oxygen-containing functional groups changes in lignite during microwave irradiation process were highlighted in this study. As the microwave absorbers, lignite char and NaNO3 were added to microwave drying of ZhaoTong lignite. The minimum chemical oxygen demand of waste water generated from microwave drying process of lignite was 99.89?mg?O2?L?1. The effects of microwave power, lignite mass, the weight ratio of lignite char to lignite and NaNO3 content on the drying rate, and moisture diffusion coefficient of lignite were investigated during lignite microwave irradiation process. It was found that the drying rate and moisture diffusion coefficient of lignite increased with increasing microwave power, the weight ratio of lignite char to lignite and NaNO3 content, but decreased with increasing lignite mass. Lignite char and NaNO3 were mixed with lignite that can enhance the instantaneous surface temperature of lignite sample under microwave irradiation. Compared with addition of lignite char to lignite, the addition of NaNO3 to lignite can decrease the unit electric power consumption of moisture evaporating. And the minimum unit electric power consumption of moisture evaporating was 9.44?Wh?g?1. The FTIR technology was used to investigate the oxygen-containing functional groups changes in lignite during microwave drying process. The oxygen-containing functional groups of lignite were effectively removed with increasing microwave power.  相似文献   

4.
ABSTRACT

In general, most heat losses in industrial dryers arise due to the discharge of humid air. Using heat pump drying systems, heat from the exhaust humid air can be recovered, thus improving the energy efficiency substantially. In this study, the performance of heat pump integration in a blood dryer was examined. Computer simulation models of the original high-temperature (180°C) dryer and the proposed system with heat pump integration and auxiliary heating were developed. Different heat pump systems and working fluids were investigated to determine the best performing heat pump system. In this case, it was found that an R245fa heat pump system with a subcooler is the best solution. When using an absorption heat pump, the results showed that a type I absorption heat pump with H2O–LiBr as working fluid pair performs the best. In addition, the economic benefit as well as the optimum operating conditions of the dryer with integrated heat pump were also determined.  相似文献   

5.
褐煤干燥提质过程中的水资源化回收利用工艺技术可以提高煤阶并回收宝贵的水资源,降低干燥提质单元能耗。本文从介绍褐煤中水的存在形态出发,围绕烟气直接干燥、蒸汽流化床干燥、微波干燥、机械热压脱水干燥等工艺综述了近年来干燥水回收利用的研究现状和最新进展,讨论分析了褐煤干燥与水回收利用工艺的选择原则。在回收褐煤中丰富的水资源时,除了单纯考虑回收褐煤中的水资源,还应权衡褐煤干燥工艺、干燥温度和干燥介质、干燥水蒸气的余热利用方式以及干燥工艺上下游间的衔接等因素。基于目前褐煤资源的主要用途,将干燥尾气采用换热技术回收低温余热和干燥冷凝水直接净化处理后的二次回用技术将是以后的重要研究和应用方向。  相似文献   

6.
《Drying Technology》2013,31(1-2):307-323
Abstract

In this article we estimate the potential of a new chemical heat pump dryer (CHPD) application to an industrial ceramics drying process from the viewpoints of energy and cost saving. A CaSO4/H2O/CaSO4·1/2H2O hydration/dehydration CHPD system and a CaO/H2O/Ca(OH)2 hydration/dehydration CHPD system were examined. The CHPD systems store heat and simultaneously release the increased amount of heat at different temperature levels by using two chemical heat pumps (CHP) in their heat-enhancement mode. Furthermore, we propose enhanced systems using chemical heat pipes (CHPipe) for their environmental and cost merits. As a result, the consumed energy and the cost of using the CHPD systems in the industrial ceramics drying process are found to decrease to less than half of the conventional drying process using gas-fired boilers. For example, the energy efficiency and the cost of the present drying process are 28.4% and 604 × 103 (JPY/month) (JPY: Japanese Yen), respectively. The energy efficiency and the cost of the proposed CHPD system are found to be 79.7% and 216 × 103 (JPY/month), respectively, based on our experiments.  相似文献   

7.
Saffron is the most expensive spice and Iran is the largest producer of this crop in the world. Saffron quality is profoundly affected by the drying method. Recent research has shown that hybrid photovoltaic–thermal solar power systems are more efficient in comparison with individual photovoltaic and thermal systems. In addition, heat pump dryers are highly energy efficient. Furthermore, they are suitable for heat-sensitive crops such as saffron. Therefore, in the present study, the performance of a hybrid photovoltaic–thermal solar dryer equipped with a heat pump system was considered for saffron drying, in order to obtain a high-quality product and reduce fossil fuel consumption. The effect of air mass flow rate at three levels (0.008, 0.012, and 0.016 kg/s), drying air temperature at three levels (40, 50, and 60°C), and two different dryer modes (with and without the heat pump unit) on the operating parameters of the dryer was investigated. The results of the investigation showed that total drying time and energy consumption decreased as air flow rate and drying air temperature increased. Applying a heat pump with the dryer led to a reduction in the drying time and energy consumption and an increase in electrical efficiency of the solar collector. The average total energy consumption was reduced by 33% when the dryer was equipped with a heat pump. Maximum values for electrical and thermal efficiency of the solar collector were found to be 10.8 and 28%, respectively. A maximum dryer efficiency of 72% and maximum specific moisture extraction rate (SMER) of 1.16 were obtained at an air flow rate of 0.016 kg/s and air temperature of 60°C when using the heat pump.  相似文献   

8.
We used a shell-and-tube type preheater to investigate the effect of noncondensable gas on heat transfer. In the preheater of the drying system, heat is exchanged between steam-air mixed gas which is dryer outlet gas and sewage sludge. To evaluate the performances of the preheater, water was first used in the tube-side material instead of sewage sludge and steam-air mixed gas in the shell-side material. The test variables were as follows: mixed gas inlet temperatures range from 95 to 120 °C; inlet air content, m air /m steam from 55 to 83%; tube-side water flow rate from 42 to 62 kg/h. The shell-side heat transfer coefficient varied from 150 to 550W/m2K, which corresponds to the amount of noncondensable gas in the steam-air mixed gas and the overall heat transfer coefficient varied from 60 to 210W/m2K. Using sewage sludge as a tube-side material the overall heat transfer coefficient varied from 60 to 130W/m2K and the outlet temperature of sewage sludge was above 90 °C, which is high enough for reducing energy consumption in the dryer by preheating the sewage sludge.  相似文献   

9.
Shengli lignite coal, originated from inner Mongolia China, contains significantly high amount of moisture (more than 30%) which can cause spontaneous combustion or other application problems. Thus, it is of interest to understand the heat and mass transfer mechanism of the low-rank lignite drying under different drying environments such as N2, CO2, air, argon, and helium. In this study, fundamental drying experiments with different drying agents were performed on coal samples using thermogravimetric analysis (TGA) method. Lignites with size of 0.045–0.075?mm were heated up from ambient temperature to a target temperature of 175°C under different environments at heating rates of 5, 10, 20, 40, and 80 °C/min, respectively. It was found that thermal conductivity of drying media, heating rate, and initial moisture content are three most significant factors affecting lignite drying process. The highest moisture release rate and the lowest Tpeak (when maximum moisture release rate occurred) were observed when drying with helium due to its highest evaporation constant (i.e., highest thermal conductivity). Moreover, higher heating rate and moisture content resulted in higher evaporation rate and Tpeak. In the meantime, the classical D2 law, which is used to simulate the liquid fuel droplet combustion, was further developed to describe the “group effect” of moisture evaporation process of solid fuel during drying. The D2 law well explains the experiment results. Finally, the structures of the dried lignite samples under different drying mediums were investigated through scanning electron microscopy studies. It was found that lignite coals shrank and became more compact when dried out, especially with drying agent CO2.  相似文献   

10.
ABSTRACT

An investigation of the thermal drying of lignite has been carried out, by using an indirect heat pilot rotary drum. The process aims at the production of dry lignite and clean steam as part of a gasification procedure. Both flighted and bare drum modes have been employed. Temperature profiles along the dryer length, the amount of evaporation (moisture conversion) and the solids residence time distribution (RTD) were measured. A non-isothermal model was tested under three different regimes of solids flow. Model integration, by taking account of experimental amount of evaporation at dryer exit and temperature profiles along the dryer length, has been utilized in the validation of drying kinetics and heat transfer correlations. Model predictions compare satisfactorily with the operating data of an indirect heat industrial lignite dryer. Overall heat transfer coefficients of the pilot rotary dryer were found to agree well with those reported for direct heat dryers.  相似文献   

11.
Microwave lignite drying with assistance of biomass-derived char was addressed and effect of bio-char on drying rate and energy consumption was investigated in this work. Effective diffusion coefficient and activation energy for the drying process were also analyzed. The results indicated the drying process was largely dependent on the variation of sample temperature. Bio-char originated from pine wood was most favorable for lignite drying, considering its better promoting effect and advanced security. There existed an optimal bio-char addition ratio for drying process at different power. The corresponding optimal ratio was 10% at 231?W and 15% at 385?W, at which the biggest drying rate and the least energy consumption were reached. It was compared lignite drying initiated at 385?W was better for energy conservation. Effective diffusivity was improved and activation energy was simultaneously reduced, with the addition of bio-char. The minimum activation energy was 15.54?W?·?g?1, which was gained at bio-char addition ratio of 10%. The results revealed the effect of bio-char on depressing activation energy could rival that of metal-based additives. The drying process with assistance of microwave and bio-char could present technical and economical benefits on lignite upgrading.  相似文献   

12.
ABSTRACT

A new chemical heat pump (CHP) system for ecofriendly effective utilization of thermal energy in drying is proposed from the viewpoints of energy saving and environmental impact. CHPs can store thermal energy in the form of chemical energy by an endothermic reaction and release it at various temperature levels for heat demands by exo/endothermic reactions. CHPs have potential for heat recovery and dehumidification in the drying process by heat storage and high/law temperature heat release. In this study, we estimate the potential of the CHP application to drying systems for industrial use. Some combined systems of CHPs and dryers are proposed as chemical heat pump dryers (CHPD). The potential for commercialization of CHPDs is discussed.  相似文献   

13.
Abstract

In this study, ultrasonic assisted osmotic pretreatment and pulsed vacuum assisted osmotic pretreatment were applied to investigate their effects on water migration and volatile components of heat pump dried Tilapia fillets. To achieve that, some effective parameters including sample drying rate, water diffusivity, microstructure, water morphology, water distribution, and volatile components were compared and analyzed with some advanced measurement devices. The water diffusivity, water distribution characteristics, and composition of volatile components were obtained after different pretreatment methods. As the drying process progresses, the sample moisture content decreases. Meanwhile, the high-degree-of-freedom water migrates to the low-degree-of-freedom water and the water-solid bond strength increases. Subsequently, the effective water diffusion coefficients of control group (without pretreatment samples), ultrasonic assisted osmosis pretreatment group and pulsed vacuum assisted osmosis pretreatment group were measured as 4.304?×?10?7m2/s, 6.109?×?10?7m2/s, and 5.003?×?10?7m2/s, respectively. In addition, the control group, ultrasonic assisted osmosis group, and pulse vacuum assisted osmosis group contained 52, 59, and 41 volatile compounds, respectively. Compared to the results from the control group, the water diffusion coefficients of ultrasonic osmotic pretreatment and pulse vacuum osmotic pretreatment increased by 41.94% and 16.24%, respectively. From the point of view of increasing drying rate, the ultrasonic penetration pretreatment provided better improvement, which was exactly consistent with the results of microstructure. On the other hand, the ultrasonic assisted osmotic pretreatment group had more types of volatile compounds, which could stimulate more flavored substances to be released. Evidently, the samples with ultrasonic assisted osmotic pretreatment showed less drying time and more aromatic substances whereas the samples from the pulsed vacuum assisted osmotic pretreatment had better protein protection feature. Although the dried samples had higher ratio of bound water and better storage stability after these two pretreatment methods, from the point of view of increasing drying rate and stimulating flavor substances, the ultrasonic assisted osmosis pretreatment method had more advantages. The research outcomes can contribute to optimize better pretreatment methods for the process of heat pump dried Tilapia fillets.  相似文献   

14.
ABSTRACT

Appropriate strategy for drying chopped spring onion with a batchwise flat bed was investigated. Both experimental and simulated results such as product quality, drying capacity and energy consumption were taken into consideration. For simulation work, equations of drying parameters such as specific heat, equilibrium moisture content and thin layer drying were first developed from the lab-scale experimental results. Then a mathematical model including shrinkage for a batchwix flat bed drying was developed. The model was lested with the results obtained from a food processing plant with an acceptable accuracy. Appropriate drying strategy war then investigated. The approximate conclusion was that the drying should be devided into 3 stages. In the 1st stage, drying air temperature was 80°C, specific air flow rate was 33.9 m3/min -kg dry matter and drying time was 0.5 h. In the 2nd stage, drying air temperature and drying time were kept unchanged but specific air flow rate was decreased to 13.5 m3/min - kg dry matter. In the final stage, drying air temperature was decreased to 67°C, specific air flow rate was also decreased to 6.8 m3/min - kg dry matter and drying time was approximately 1.7 h. Following the suggested strategy, specific primary energy cornsumption was 6.2 MJ/kg H2O, drying time was 2.7 h and product quality was maintained. It was proven that energy consumption was approximalcly 70% of that of the present practice in the plant.  相似文献   

15.
林子昕  田伟  安维中 《化工进展》2022,41(11):5722-5730
针对传统变压精馏工艺分离碳酸二甲酯(DMC)/甲醇(MeOH)共沸物存在的高能耗问题,提出了基于热泵辅助的改进变压精馏工艺,并探索了不同热泵方案的可行性和经济性。该研究在ASPEN PLUS模拟平台上进行。首先,设计出传统的热集成变压精馏工艺(H-PSD),并通过塔总组合曲线分析了传统工艺用能瓶颈和工艺改进方向;然后,提出了4种不同型式的热泵辅助的改进工艺,并通过模拟技术取得不同方案的设计参数;最后,采用组合曲线和经济性分析相结合的方法,比较了不同热泵方案的节能效果和经济性。研究表明,各种热泵方案中,基于中间再沸器的蒸汽再压缩式热泵的节能效果及经济性最好。与传统热集成变压精馏比较,过程能耗降低了24.31%,年均操作费用降低了29.43%,年度总成本可降低12.58%,体现了热泵辅助工艺的良好节能效果和经济性。  相似文献   

16.
Vasile Minea 《Drying Technology》2013,31(14):1630-1643
This article presents a 13-m3 wood dryer coupled with a 5.6-kW (compressor power input) heat pump. Drying tests with hardwood species such as yellow birch and hard maple were completed in order to determine the system's energy performance. Supplementary heating to compensate for the dryer heat losses was supplied using electrical coils or steam exchangers. The heat pump running profiles and dehumidification performance in terms of volumes removed and water extraction rates, coefficients of performance, and specific moisture extraction rates were determined for two all-electrical and two hybrid drying tests. The hardwood drying curves, share of the final moisture content, and final quality of the dried wood stacks, as well as total drying energy consumption and costs, were determined for each drying run. Finally, the total energy consumption of the drying cycles using a heat pump was compared with that of a conventional drying cycle using natural gas as a single energy source.  相似文献   

17.
在热泵木材干燥机上热管空气回热器可以利用从热泵蒸发器出来的低温冷空气来预冷进蒸发器前的空气,使得空气在蒸发器中除湿能耗比SPC在空气温度为50℃、相对湿度为80%时从原来的0.41kWh/kg水降低为0.32kWh/kg水,每去除1kg水比原来节电24%,木材干燥周期短,不易开裂。  相似文献   

18.
《Drying Technology》2013,31(7):1603-1620
Abstract

Drying kinetics of tomato was studied by using heat pump dryer (HPD) and electric resistance dryers with parallel and crossed airflow. The performance of both systems was evaluated and compared and the influence of temperature, air velocity, and tomato type on the drying kinetics was analyzed. The use of HPD showed to be adequate in the drying process of tomatoes, mainly in relation to the conversion rate of electric energy into thermal energy. The heat pump effective coefficient of performance (COPHT,EF) was between 2.56 and 2.68, with an energy economy of about 40% when compared to the drying system with electric resistance. The Page model could be used to predict drying time of tomato and statistical analysis showed that the model parameters were mainly affected by drying temperature.  相似文献   

19.
ABSTRACT

As some previous research works on heat pump dryers (HPD) gave contradictory results, there is a need to review and identify R&D needs and opportunities in HPD. It was found that mathematical modeling cannot ignore the interdependence of the heat pump working fluid and the process air of the dryer. The performances of various HPD configurations with respect to all operating varibles need further investigation. A well defined mathematical model of combined dryer-drying material characteristic is required for the system modeling. The relative specific drying cost and relative useful energy were introduced as the dryer selection criteria. The role of the heat pump in the HPD system, CFC alternatives and non-conventional heat pump cycles using air or steam as working fluids deserve further investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号