首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract

Radio frequency heating combined with convection (RF/C) drying of larch boxed-heart square timber and its influence on drying kinetics such as rate, moisture content distribution, and stresses was explored. Results revealed that RF heating increased the drying rate and in RF/C drying was twice as high as in conventional drying. Below fiber saturation point, RF heating reduced internal moisture gradients, especially around moisture content of 20%. The effect of RF heating on moisture transfer was strongly associated with moisture content. Specifically, above the fiber saturation point, RF heating played a minor role in moisture transfer however, it reached maximum around fiber saturation point and thereafter, it largely decreased with moisture content. RF heating relieved some drying stresses during RF/C drying and reduced residual stresses in the timber surface layers. Furthermore, it changed the original development pattern of drying stresses in conventional drying.  相似文献   

2.
ABSTRACT

A transient one dimensional first principles model is developed for the drying of a porous material (wood is used as an example) that includes both heat and mass transfer. Heat transfer by conduction and convection, mass transfer by binary gas diffusion, pressure-driven bulk flow in the gas and liquid, and diffusion of bound water are included in the analysis. The diffusive mass transfer terms are modeled using a Fickian approach, while the bulk flow is modeled assuming Darcian flow. Depending on the state (pendular or funicular) of the moisture in the wood, appropriate terms are considered in the development of the governing mass equations. The results provide distributions within the material of each moisture phase (vapor, liquid, and bound), temperature, and total pressure. Information regarding the drying rate and evaporation rate is also presented. Average distributions are obtained as a function of time, and compared with experimental data from the literature. It is observed that the total pressure within the material can be considerably above one atmosphere during the drying process.  相似文献   

3.
ABSTRACT

A mathematical model has been developed to study the drying of paper using a gas-fired IR dryer. The model accounts for various phenomena : water and vapour mass transfer, conduction, convection and radiation heat transfer. The phenomenological equations are solved with a finite difference scheme, including a modified upwind differencing scheme to account for water migration within the paper sheet. The simulation results illustrate the basic underlying phenomena involved in IR paper drying and can be instrumental to the engineer to make the detailed analyses of such a drying process. A sensitivity analysis has shown that the drying rate is most sensitive to parameters governing the IR beat transfer process whereas the paper sheet temperature is most sensitive to parameters governing the mass transfer process with the surroundings.  相似文献   

4.
ABSTRACT

This paper reviews a recent development in the heat and moisture transfer modeling for drying single layes of agricultural grains. A diffusion model with time-varying boundary condition predicts the complex shape of the drying curve well. A conduction model with evaporating boundary condition, when used with the Gamson correlation for convective heat transfer coefficient, accurately predicts experimental grain surface temperature. The new modewls were tested experimentally, drying wheat and barley in a thin-layer dryer useing 40 to 175 c air and the initial moisture ranging from 0.20 to 0.40 (decimal dry basis). It is shown that grain temperatures calculated by the conduction heat equation, when used in conjunction with a probit-type germination loss model, predict germination values different from those predicted by the lump heat equation.  相似文献   

5.
《Drying Technology》2013,31(4):853-875
Abstract

A theoretical analysis of heat transfer and moisture variation was performed while a PVA solution was exposed to high-intensity nongray irradiation and/or air flow convection. Effective absorption coefficients were incorporated in the radiative transfer analysis. The influence of various radiation and convection parameters on the transfer of heat and moisture variation in the coated layers on an optically thick substrate was investigated. The effects of radiation and convection parameters on the transfer process were presented in terms of the rate of water content removal, heat transfer, and moisture distribution. Results were compared to those of drying when using convective heat. It is evident that the use of thermal radiation combined with convective heat will help in improving the drying rate. Numerical results show that both the radiative energy absorbed by the solution and the substrate and the distribution of water mass fraction in the solution are closely related to the rate of water removal from the solution during the process.  相似文献   

6.
ABSTRACT

Slot Jet Reattachment (SJR) nozzle is an extension of the Radial Jet Reattachment (RJR) concept used to provide high heat and mass transfer while minimizing flow exerted forces on the reattachment surface. The SJR is a slot jet nozzle with a bottom plate attached to it, which is machined to direct impinging flow at different angles to the surface. The drying characteristics of the SJR nozzle with four exit angles on a paper sample were studied for three Reynolds numbers, three temperatures and two initial moisture contents. Dry air was used as the jet fluid. Correlations to predict drying rates and moisture content for the SJR nozzle as a function of exit angle, temperature, Reynolds number and drying time, for a given initial moisture content, were developed. A comparison of the drying characteristics and net forces of the slot jet and SJR nozzles was also performed under the same flow power and surface peak pressure.  相似文献   

7.
ABSTRACT

A rotary drum dryer prototype was designed, fabricated and tested to combine convection drying with conduction heating of paddy to increase moisture reduction rates. Ambient air forced inside the drum counter-flow to the direction of the cascading grains brought about “dryeration” of the hot grains, resulting in cooler grain output and increased moisture reduction rates. Its partial drying capacity doubled that of the benchmark pre-dryer at 5?rpm drum speed and quadrupled at 7?rpm, requiring only a single-pass operation. Tests using freshly harvested and re-wetted paddy showed that partial drying capacity, final moisture content and moisture reduction rate were all significantly affected by counter-flow air velocity, Its overall thermal efficiency was also 50% higher.  相似文献   

8.
Abstract

Using the method of combining the two subjects of engineering thermophysics and physiology, this paper carried out the thermo-image experiments of drying Chinese cabbage seeds at both dynamic and static states in the infrared radiation vibrofluidized dryer that was made by us. Meanwhile the seed physiology experiments were also conducted. The results show that the critical drying temperature of seeds is the function of their drying time and moisture content. It is higher when the initial moisture is lower, or the drying time is shorter. This provided the theoretical basis for the optimization of heat and mass transfer of seeds drying.  相似文献   

9.
ABSTRACT

The drying of biomass fuel particles in fixed and moving beds with hot gas or steam is considered both experimentally and theoretically. A single particle drying model is coupled with a model describing beat and moisture transfer in The gas phase of the bed. The size of the bed to reach a certain degree of drying depends mostly on the following parameters: particle size, panicle moisture content, gas inlet temperature, gas inlet moisture content and gas mass flow rate.  相似文献   

10.
The drying behavior of a single rice kernel subjected to convective drying was analyzed numerically by solving heat and moisture transfer equations using a coupled computational fluid dynamics (CFD) and diffusion model. The transfer coefficients were computed simultaneously with the external flow field and the internal diffusive field of the grain. The model was validated using results of a thin-layer drying experiments from the literature. The effects of velocity and temperature of the drying air on the rice kernel were analyzed. It was found that the air temperature was the major variable that affected the drying rate of the rice kernel. The initial drying rates (in first 20 min) were 7, 12, and 19% per hour at inlet air temperatures of 30, 45, and 60 ° C, respectively. Important temperature gradients within the grain existed only in the first few minutes of the drying process. The moisture content gradients reached a maximum value of 11.7% (db) mm ?1 at approximately 45 min along the short axis in the thickness direction. The variation in the inlet air velocity showed a minor effect on the drying rate of the rice kernel. The heat and mass transfer coefficients varied from 16.57 to 203.46 W·m ?2·K ?1 and from 0.0160 to 0.1959 m·s ?1, respectively. The importance of the computation of the transfer coefficients with the heat and mass transfer model is demonstrated.  相似文献   

11.
Abstract

This paper mainly focuses on cross-effect of heat and mass transfer of capillary porous media which A.B.Luikov set up on irreversible thermodynamics principle. On the basis of perfecting the equations of heat and mass transfer, the heat and mass transfer parameters are determined during drying processes, and thermal gradient coefficient δ and moisture gradient coefficient ξ are obtained which show the cross-effect of heat and mass transfer. Thus the fundamentals are provided for quantitative analysis of cross-effect of heat and mass transfer. The convective drying mathematical model under the first unsteady boundary condition is therefore proposed. By the application of Henry transform, the theoretical solution of unsteady drying process is given and its validity is verified  相似文献   

12.
ABSTRACT

A transient one dimensional first principles model is developed for the drying of a porous material (paper) that includes both heat and mass transfer. All three modes of heat transfer are considered; conduction, convection and radiation. The conduction is assumed to be in one dimension, through the porous material. The convection is assumed to exist only at the surface as a boundary condition. The radiation is assumed to be a volumetric phenomenon, so that the material internally absorbs, emits, and scatters energy. The absorption and scattering coefficients are spectrally dependent. Furthermore, the material is considered to have a non-unity refractive index with diffuse surfaces. In the mass transfer it is assumed that water exists in three phases: bound, free and vapor. The results provide profiles within the material for each moisture phase, temperature, and pressure and the effect of radiation on these distributions.  相似文献   

13.
ABSTRACT

Pine sapwood was dried in an air convection kiln at temperatures between 60-80 °C. Temperature and weight measurements were used to calculate the position of the evaporation front beneath the surface. It was assumed that the drying during a first regime is controlled by the heat transfer to the evaporation front until irreducible saturation occurs. Comparisons were made with CT-scanned density pictures of the dry shell formation during initial stages of drying of boards.

The results indicate a receding evaporation front behaviour for sapwood above approximately 40-50% MC when the moisture flux is heat transfer controlled. After that we finally reach a period where bound water diffusion is assumed to control the drying rate.

The heat transfer from the circulating air to the evaporation front controls the migration flux. In many industrial kilns the heating coils therefore have too small heat transfer rates for batches of thin boards and boards with high sapwood content.  相似文献   

14.
15.
《Drying Technology》2013,31(8):1411-1431
Abstract

A simulation model for convective drying of wet porous materials was developed. For the simulation, we measured the moisture diffusivities within them and applied a modified Dubinin-Astakhov equation to the moisture sorption data for a membrane filter. The simulation results not accounting for internal mass transfer resistance were quite different from the experimental ones. The drying characteristics calculated by a shrinking core model with effective moisture diffusivity represented a much lower drying rate and much higher temperatures, respectively, than the experimental ones. This meant that we must consider the plural moisture transport mechanisms within the samples. Therefore, we calculated the drying rate and temperatures with an apparent overall mass transfer coefficient damping with a decrease in the moisture content. The results accounting for the hygroscopic effects broadly agreed with the experimental ones by the evaluation.  相似文献   

16.
ABSTRACT

A mathematical model for predicting three-dimensional, two-phase flow, heat and mass transfer inside fluidized-bed dryers has been developed. The model consists of the full set of partial-differential equations that describe the conservation of mass, momentum and energy for both phases inside the dryer, and is coupled with correlations concerning interphase momentum-, heat-, and mass-transfer.

It is shown that the model can predict the most important engineering aspects of a fluidized-bed dryer including pressure drop, particle holdup, temperature distribution in both phases as well as drying efficiency all over the fluidized-bed. Plug-flow conditions are predicted for the gas phase, while back-mixing is predicted for the particles.

The effect of particle mass-flow-rate on fluidized-bed dryer performance is evaluated. It is shown that the lower the particle mass flow-rate, the more intense the horizontal moisture gradients, while the higher the particle rate the more uniform the moisture distribution throughout the bed.  相似文献   

17.
ABSTRACT

The drying mechanism and diffusion coefficient of water in spherical droplets (1.73 – 2.08 mm diameter) of tomato concentrates were successfully interpreted and modelled by using Fick's law. Solids content of the initial concentrate (5–15% w/w), and drying temperature (60° – 100° C) were varied but the drying air was kept at constant velocity and humidity.

The effective moisture diffusivity was estimated from the drying rate curves and expressed by an Arrhenius relation. Further, it was observed that case hardening has a large effect on the diffusion process causing the effective diffusional distance and the rate of moisture accumulation in the hardened crust to vary with the moisture content, according to a sorption controlled mechanism.  相似文献   

18.
ABSTRACT

A deterministic model was developed to perform a board-by-board simulation of a forced convective batch lumber kiln. Individual board properties may be input and dryer operating parameters varied. The drying rates are empirical correlations based on single-board laboratory tests. The model incorporates the thermodynamic properties of the wood and gas, as well as mass and energy balances within the lumber stack. It also accounts for differences in heat and mass transfer resulting from position and changing gas properties throughout the dryer. The rate of drying predicted by the model and the final moisture content distribution were verified by weighing boards in a batch kiln before, during, and after drying. The application of the model is illustrated by simulating four common scenarios.  相似文献   

19.
ABSTRACT

Drying of solid fuel particles in hot gases ( 50–200c) is studied both theoretically and experimentally. The measurements are carried out by using a thermobalance reactor constructed for drying and pyrolysis studies of particles up to 30 mm by diameter. The model is based on the solution of the conservation equations for mass and energy. The drying is considered to consist of three successive periods: a short initial heating period, period of constant rate of drying and period of falling rate of drying. It is assumed that the particle moisture distribution is uniform during the constant rate of drying. Shrinking core model is assumed for the falling rate period. esides fuel particles, the model is applicable also for other solid particle drying processes. Model calculations are compared to measurements for wood chips. The model can predict the efFect of the main parameters reasonably well. These main parameters affecting the drying rate are: particle size, particle shape, initial particle moisture content, gas temperature and gas moisture content, emperature of the reactor walls and slip velocity. The irregular shape of practical fuel particles can approximately be simulated as one-dimensional case ( plate, cylinder, sphere) by using an equivalent volumc to surface area ratio.  相似文献   

20.
L. Lu  J. Tang  L. Liang 《Drying Technology》2013,31(3-5):503-524
Abstract

Moisture distribution in spheres of potato (Solanum tuberosum) and yam (Dioscorea japonica) tubers during microwave drying was investigated. Moisture variation at various locations within the samples was experimentally determined for different drying times. A numerical simulation model was developed based on a modified form of Lambert's law for microwave penetration in spheres and on moisture transfer in both liquid and vapor phases. This model was used to study various factors influencing moisture distribution. Moisture profile during microwave drying was strongly influenced by non-uniform microwave energy distribution within the foods. The core moisture contents were lower than other parts of potato and yam spheres of the various sizes tested in this study (2.6 cm to 6.0 cm diameter). The sphere radius to microwave penetration ratio (2αro) was an important parameter affecting the moisture profile in spherical foods. For 2αro of less than 2.0, the moisture content in the center of potato and yam spheres was markedly lower than the rest of the food, but for 2αro between 2.5 and 4, moisture contents at the center and close to the surface were lower than the average moisture content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号