首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用CO2激光在TC4合金表面进行了NiCrBSiC+TiN粉末的熔覆试验,获得了连续均匀、无气孔和裂纹的熔覆层,利用EPMA、SEM和TEM分析了激光熔覆层的微观组织。结果表明,熔覆层的组织为在Ni基合金基体上均匀分布着TiN颗粒和针状的M23(CB)。相,TiN颗粒与Ni60合金结合紧密,界面干净光滑。熔覆层与TCA合金呈冶金结合,结合区的组织由柱状晶和树枝晶组成,基底热影响区为马氏体组织。  相似文献   

2.
激光熔覆Cu-TiB2复合材料涂层及其耐磨性   总被引:5,自引:0,他引:5  
采用500W YAG固体激光器,在纯铜表面成功地原位合成了Cu-TiB2复合材料层,测定了Cu-TiB2原位复合材料熔覆层的显微硬度,研究了熔覆层的磨损行为。结果表明,激光熔覆复合材料层组织完好,TiB2颗粒细小均匀,涂层与基体呈较好地冶金结合;熔覆层表面的显微硬度达480-580HV,耐磨性是纯铜的15~20倍;在保证界面良好的基础上,光斑直径一定,硬度及耐磨性随扫描速度的增大、激光功率的减小而增大。  相似文献   

3.
激光熔覆原位合成TiC-TiB2复合涂层   总被引:4,自引:0,他引:4  
为了提高材料表面的强度及耐磨性,在Fe901自熔性合金粉末中添加了不同比例的(TiO2+B4C+C+Al)混合粉末,采用激光熔覆技术在45钢表面成功制备了TiC-TiB2增强复合涂层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计和磨损试验机等对复合涂层的相组成、显微组织形貌及力学性能进行了分析,同时对反应体系进行了热力学计算。结果表明:复合涂层与基材呈冶金结合,无气孔、裂纹等缺陷。反应体系满足原位合成TiC和TiB2的热力学条件。涂层物相由α-Fe、TiC、TiB2和(Fe,Cr)7C3组成。细小的方块状TiC颗粒和长条状TiB2均匀弥散分布于涂层基体上,可起到进一步细化组织及沉淀强化的作用。添加(TiO2+B4C+C+Al)混合粉末后,涂层组织明显细化且树枝晶数量减少,并且随着添加量增多,组织越细小。TiC-TiB2增强复合涂层显微硬度在720~760HV0.2之间,比不含TiC-TiB2的涂层提高了30%左右,耐磨性明显提高,混合粉末添加质量分数为50%时耐磨性最好。  相似文献   

4.
激光熔覆Ni基非晶复合涂层组织结构及性能研究   总被引:2,自引:1,他引:2  
在45钢基体表面预涂覆Ni42Zr30Ta28合金粉末,采用DL-HL-T5000B型无氦横流CO2激光器进行激光熔覆制备非晶复合涂层。利用X射线衍射仪、金相显微镜对熔覆层进行微观组织分析,同时进行了硬度及摩擦性能测试。结果表明:熔覆层组织主要由金属间化合物(Fe7Ta3,Ni7Zr2,FeNi3,Ni3Ta等)、非晶相及纳米晶组成。当功率为3.3 kW时,熔覆层硬度达到最高,为2 954.3HK;磨损率最小,为0.571 mg/mm2。  相似文献   

5.
为了达到研究预置激光熔覆可以在45钢上制备Ni基非晶合金涂层的目的,采用非晶形成能力三判据原则及非晶成分团簇线定律法则,选择了采用常规非晶合金制备方法中具有极大玻璃形成能力(GAT)的Ni_(59.35)Nb_(34.45)Sn_(6.2)合金粉末,在保护气氛下,制备非晶涂层,并对不同输出功率下得到的涂层进行微观组织和结构表征及性能测试.结果表明:激光熔覆Ni_(59.35)Nb_(34.45)Sn_(6.2)涂层中除含有非晶相外还含有Nb_3Sn、Nb_2Ni、Ni_3Sn_2及Ni和Sn的氧化物相.当激光功率为3300 W时,熔覆层表层显微硬度值最大为1638.1 HK;涂层由于非晶相的存在耐蚀性有明显提高,在该功率下致盹电流密度和维钝电流密度都达到最小,分别为1.3537 mA/cm~2和0.2652 mA/cm~2.  相似文献   

6.
Mo-Ni-B系三元硼化物陶瓷涂层激光熔覆制备及其腐蚀性能   总被引:2,自引:0,他引:2  
采用激光熔覆技术在Q235钢表面原位合成了Mo2NiB2陶瓷涂层。利用扫描电镜和静态浸泡法、电化学方法研究了涂层的显微组织及耐腐蚀性能。结果表明,涂层与基材形成了良好的冶金结合,组织致密,增强相分布较为均匀且无明显的裂纹和孔洞。在3.5%NaCl溶液中,涂层的腐蚀电位明显比基材正移,腐蚀电流密度约为基材的1/4,说明Mo2NiB2陶瓷涂层显著提高了基材的耐腐蚀性能。  相似文献   

7.
目的利用电磁复合场(EMCF)辅助激光熔覆制备TiB_w/Ti网状结构复合涂层,探索电磁场对涂层组织结构的影响。方法以TiB_2∶Ti=1∶1(摩尔比)的混合粉末为熔覆材料,TC4作为基板材料,通过外加电磁复合场进行激光熔覆试验。通过扫描电子显微镜(SEM)观察洛伦兹力方向对熔覆层组织结构的影响,利用X射线衍射仪(XRD)和维氏显微硬度计分析施加电磁复合场前后熔覆层的相组成和硬度分布。结果未施加电磁复合场的熔覆层组织主要为细针状、粗棒状和颗粒状组织。而施加电磁复合场后,熔覆层出现了网状结构,而且方向向下的洛伦兹力可使涂层内部形成空间间距更大的网状结构。此外,单独施加稳态磁场后,熔覆层只出现细针状和粗棒状组织。电磁复合场施加前后熔覆层硬度与基体相比,均有很大的提高。但未施加电磁复合场的熔覆层硬度变化幅度较大;施加电磁复合场后,随着距熔覆层表面距离的增加,硬度的变化幅度比较平缓。结论在洛伦兹力作用下,可得到TiB_w/Ti网状结构的复合涂层,电磁复合场使TiB_w/Ti网状结构强化相均匀分布,同时提高涂层的显微硬度。  相似文献   

8.
激光熔敷原位合成WC增强铁基复合涂层的组织和性能   总被引:4,自引:2,他引:2  
利用激光熔敷原位合成技术,以一定比例的Fe、C、W等粉末为熔敷材料,在Q235钢基体上原位反应合成WC颗粒增强型铁基涂层。分别采用OM、SEM、XRD、EDS、显微硬度、摩擦磨损等分析测试方法对熔敷金属的组织、成分和力学性能等进行研究。结果表明:合适的工艺参数下,能够得到无缺陷的与基体冶金结合的熔敷层金属,熔敷层内的硬质相主要为Fe_3W_3C、W_2C和很多晶粒细小WC;W粉颗粒尺寸影响熔敷层中WC的生成量,小尺寸的钨粉颗粒可以生成更多的WC,当W粉颗粒尺寸达到23μm时,出现了细小的六边形的WC形貌;适当提高Cr的含量可以增加熔敷层的硬度,但会减少WC的生成数量。激光熔敷层的硬度相比基体有很大提高,平均硬度可达到921 HV;耐磨性能远高于基体,当出现细小的六边形WC颗粒时,耐磨性能可达到基体的602倍。  相似文献   

9.
为了制备高性能耐磨带,提高工件的使用寿命,利用激光宽带熔覆技术在17-4PH不锈钢表面沉积镍基合金做为过渡层,然后熔覆球形WC/Ni基复合涂层。对激光熔覆层分别采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)等检测分析手段进行形貌观察、成分分析、物相表征等,并使用MMG-10型摩擦磨损试验机进行涂层耐磨性能测试。研究结果表明,采用激光熔覆技术可制备高质量WC/Ni基复合涂层,碳化钨质量分数达到65%,涂层冶金质量、裂纹尺寸、稀释率等满足技术要求。复合涂层的耐磨性为镍基合金的15倍,但其平均摩擦系数(0.926)高于镍基合金(0.762)。  相似文献   

10.
以自制的氧化锆溶胶和氧化锆纳米粉为原料,采用激光熔覆法,通过控制激光能量,在不锈钢表面形成复合纳米氧化锆涂层.结果表明:粉体与溶胶的结合减少了粉体的扩散和体积收缩,得到与不锈钢结合良好且无开裂的涂层.  相似文献   

11.
激光熔覆生物陶瓷涂层的组织结构   总被引:3,自引:1,他引:3  
借助XRD及SEM对TC4钛合金表面激光熔覆陶瓷涂层的组织结构进行了研究。结果表明,该涂层为含HA等钙磷基复合相结构,其组织具有择优取向,有序分布的胞状微晶特征,晶内局部区域有细小粒状物析出,晶界存在第二相,涂层与基体界面为化学冶金结合。该涂层提高了与自然生物硬组织组织结构特性的相似程度。  相似文献   

12.
用激光熔覆技术在45钢表面制备了不同成分配比的原位自生TiB_2/Ni金属陶瓷复合涂层,研究了涂层的残余应力分布和开裂行为.结果表明:裂纹源产生的部位主要是熔敷层中的硬质相央杂物、熔覆层中共晶团问显微孔和熔覆层与基材界面间的微孔洞.  相似文献   

13.
采用粉末预置法,在Q235钢表面激光熔覆Fe-Al复合涂层。采用SEM、XRD等方法分析了涂层的显微组织和物相结构,研究了不同激光工艺参数对涂层显微硬度和耐磨性的影响。结果表明,在优化工艺参数下,涂层与基体形成了良好的冶金结合,组织均匀细密,涂层中含有Al2O3硬质颗粒相及金属间化合物Fe3Al,其硬度和耐磨性得到提高。  相似文献   

14.
T10钢表面激光熔覆Ni/WC-La_2O_3性能研究   总被引:3,自引:0,他引:3  
采用激光熔覆技术在T10钢表而激光熔覆Ni基合金,并研究了在Ni基合金中加入WC硬质相、纳米稀土氧化物La_2O_3后的性能和组织结构的变化情况.实验表明:激光熔覆层由熔覆层、结合区和热影响区组成,在合适的工艺条件下可得到结合性能良好的熔覆层.Ni60+30%WC熔覆层的硬度与未加入WC相比改变不大,但耐磨性却得到很大的提高;Ni60+1.0%La_2O_3熔覆层主要由树枝晶组成,在激光熔覆层中添加La_2O_3,起到细化枝晶的作用,同时激光熔覆层平均硬度比未加稀土的提高约150 HV0.1.  相似文献   

15.
激光熔覆原位合成TiC/Al陶瓷基复合涂层增强Ti6Al4V研究   总被引:1,自引:0,他引:1  
采用Ti-C-Al体系激光点火自蔓延合成TiC/Al材料的同时,在Ti6Al4V钛合金表面形成均匀厚度的涂层。实验所用设备为2kWNd:YAG脉冲固体激光器;原料中钛碳原子比1:1,铝含量范围10%~40%(质量分数)。原料中的铝含量对原位合成的TiC颗粒形态和大小影响较大,通过实验确定了原料中合适的铝含量。利用扫描电镜对涂层与基体结合界面微观结构进行表征,测试涂层的显微硬度和耐磨性。结果表明,涂层和基体有良好的冶金结合;TiC颗粒在涂层表面处主要以树枝晶状存在,而在涂层与基体连接处主要为近球状晶粒;涂层显微硬度可达到8000MPa(HV0.5),约为基材的2~3倍。  相似文献   

16.
尹泉  彭如恕  朱红梅 《表面技术》2016,45(4):99-104
目的 采用激光熔覆技术在304不锈钢表面制备含有碳铬、硼钛化合物及氧化钛等增强相的铁基熔覆层,并对涂层的微观组织及其性能进行研究分析,以期为以后工业化应用提供理论基础.方法 对钛铁(钛质量分数70%)+硼铁(硼质量分数70%)+石墨(纯度99.9%)复合粉末质量分数分别为5%、10%、20%、30%的4种熔覆层(其余熔覆材料为304不锈钢粉末)进行了实验研究,利用扫描电镜(SEM)、X射线衍射对激光熔覆层的微观组织形貌和增强粒子的成分进行研究分析,用光学显微硬度计对激光熔覆层的显微硬度进行测试,用电化学工作站对熔覆层的耐蚀性能进行测试.结果 熔覆层无明显裂纹、气孔等缺陷,与基材结合良好;加入的石墨与钛铁、硼铁在激光熔覆过程中发生了反应,原位生成了Cr23 C6、Cr3 C2、TiO2、Ti1.8 B50等硬质增强相;随着钛铁、硼铁和石墨所占的质量分数增加,熔覆层中生成的硬质增强相含量增加,熔覆层的显微硬度值也随之得到明显提高,其中质量分数为30%的复合粉末熔覆层硬度是基材的3.6倍;激光熔覆试样较基材的耐腐蚀性也随着复合粉末质量分数的增加而提高,其中质量分数为30%的复合粉末熔覆层的耐蚀性是基材的1.58倍.结论 激光熔覆制备含有碳铬、硼钛化合物及氧化钛等增强相的铁基熔覆层较基材性能有明显提高.  相似文献   

17.
钛合金表面激光熔覆Metco45C涂层的组织研究   总被引:1,自引:0,他引:1  
对钛合金表面激光熔覆Metco45C涂层的组织进行了研究。结果表明,激光熔覆区在微观结构上分为熔覆层、熔化区和热影响区。熔覆层组织为细的枝晶状组织;熔化区为树枝状和颗粒状组织。钛合金表面激光熔覆Metco45C可以实现涂层与基体之间良好的冶金结合。  相似文献   

18.
采用横流2.0kW CO2激光器,在45钢表面制备了表面较平整、较细密、基本消除了裂纹与孔隙并与基体呈冶金结合的镍基纳米WC/Co复合涂层。通过SEM,EDAX,XRD,AFM及Nano Indenter XP分析了熔覆层的显微组织、成分、物相及结合强度。结果表明,涂层的显微组织为涂层中镶嵌着大量与Ni基合金结合良好的WC/C。颗粒,其中在原子力显微镜下可见相当数量的粒度≤100μm的纳米颗粒。涂层的结合强度比传统热喷涂涂层提高了2.1倍。涂层中纳米WC/Co的纳米效应在激光熔覆中起着重要作用。  相似文献   

19.
THE TECHNOLOGY of a metal matrix composite(MMC)coating reinforced by ceramic particles oncheap metal substrates is a newly developed process.A powder alloy with a desirable composition is put onthe surface of a substrate.The powder and the toplayer of the substrate are simultaneously melted andrapidly solidified to form a dense coating and bondedtogether.Up to now,many cladding processes havebeen developed,including laser cladding'1'21,electroncladding and plasma cladding.The laser cladd…  相似文献   

20.
目的提高316L不锈钢表面的耐蚀性和生物活性。方法首先采用激光熔覆技术在316L不锈钢表面制备钛层,然后对钛层表面进行微弧氧化处理,从而在316L不锈钢表面制备出含有Ca、P元素的多孔状陶瓷涂层。利用扫描电子显微镜(Scanning Electron Microscope,SEM)、能谱仪(Energy Dispersive Spectrometer,EDS)、X射线衍射仪(X-Ray Diffraction,XRD)分析了钛层厚度对陶瓷涂层的表面显微形貌、元素含量及物相组成的影响。利用电化学实验、浸泡实验分别测试了涂层在1.5倍SBF溶液中的耐蚀性能和生物活性。结果通过激光熔覆复合微弧氧化能够在316L不锈钢表面制备出多孔状陶瓷涂层。随着钛层厚度的增加,微弧氧化原位生成的陶瓷涂层致密度、厚度也增加。当钛层厚度达到0.4 mm时,微弧氧化后得到的陶瓷涂层完整致密,厚度达到20μm。涂层主要由锐钛矿相Ti O2、金红石相Ti O2组成。极化曲线分析可知,腐蚀电位Ecorr为-0.162 V,腐蚀电流密度降至5.11×10-7 A/cm2。陶瓷涂层在1.5倍SBF中浸泡3天后表面即有羟基磷灰石沉积。结论通过激光熔覆复合微弧氧化在316L不锈钢表面制备的陶瓷涂层在模拟体液环境下具有较好的耐蚀性能,同时也具备良好的生物活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号