首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal comfort studies on traditional residential buildings of Kerala that is known for its use of natural and passive methods for a comfortable indoor environment, are under progress. Scientific analyses of the environmental parameters determining thermal comfort have already been reported. Similar studies on modern residential buildings are underway. In order to compare the results of the scientific analysis with the user responses from the residents of traditional as well as modern residential buildings, a questionnaire survey was conducted during various seasons such as winter, summer and monsoon. A questionnaire was prepared in detail to understand the effect of factors which affect thermal comfort such as temperature, humidity and air flow in the evaluation of thermal comfort. This paper is based on the compilation of responses from the conducted survey. A comparison of the study results with that of scientific analysis already reported is also incorporated at the end of this paper. This study further confirms that Kerala traditional residential buildings are very effective in providing comfortable indoor environment irrespective of various seasons.  相似文献   

2.
A long-term field survey was conducted with six buildings in order to investigate how the occupants adapt to the indoor climate in office buildings in Japan. More than 5000 questionnaires and corresponding indoor temperatures were collected. Clothing adjustment was observed to be related to outdoor temperature and indoor temperature, as well as dress codes. No considerable differences were found on the thermal perceptions between two groups of buildings, which provided different levels of opportunity for controlling indoor climate. With both groups, the preferred SET* was always close to 26 °C. The comfort temperature was estimated from the results of clothing adjustment and the preferred SET*. The gradient of the comfort temperature to outdoor temperature was found to be between the adaptive model for centralized HVAC and for natural ventilation. It could be caused by that the major part of the occupants in the present study had more opportunity to control their thermal conditions than in the centralized HVAC buildings (i.e. operable windows, controllable HVAC or personal fans).  相似文献   

3.
Thermal comfort surveys in school classrooms suggest that children have different thermal preferences to adults. This implies a need to revisit the current adult-based thermal comfort models. This paper investigates the principal adaptive comfort relationships that form the basis of adaptive comfort theory, using 2693 pupil thermal sensation responses and measured classroom temperatures from surveys in two naturally ventilated school buildings. The data were examined in two steps. Firstly, each survey set, obtained over one-day visits to the schools, was examined in order to derive the relationship between indoor temperature change and comfort vote with minimum impact of adaptation. Secondly, the data set was investigated over the entire survey period in relation to the weather experienced by the pupils in order to estimate their time for adaptation to outdoor temperature changes. The analysis shows that the basic adaptive comfort relationships are valid for children. However, a difference was found for the correlation coefficients of the comfort temperature to the outdoor running mean temperature between the schools, and a mismatch between their adaptive comfort equations. It is proposed that the difference in the consistency of the weather during the tests is the main reason for this discrepancy.  相似文献   

4.
《Energy and Buildings》1996,23(3):169-174
Field surveys of thermal comfort have been conducted summer and winter in the five climatic regions of Pakistan to help the Pakistani Government to replace existing inappropriate indoor temperature standards. Results are presented which show large variations in desired indoor temperature with climate and season. The reasons for the differences are explored and an indication of the way in which responsive indoor temperature standards, which encourage the use of passive architecture and save energy in air-conditioned buildings, might be framed is presented.  相似文献   

5.
随着人们生活水平的不断提高,人们对室内环境舒适度的要求也提出了更高要求,良好的室内热湿环境不仅影响人体健康,同时也能给工作生活带来愉快的心情。此次实验研究,选取三峡大学综合教学楼B区作为实验地点,通过随机对教室内的学生发放调查问卷,综合分析实验结果,研究了空气温湿度对人体热舒适性的影响,分别根据热感觉和热舒适投票值确定了人体热舒适区,研究发现80%满意率的室内温度范围在22~26℃,相对湿度范围在45%~55%,得到的夏季舒适区范围与ASHRAEStanard55-1992相比也略有偏差。  相似文献   

6.
对热舒适、空气感觉质量及能耗的模拟研究   总被引:5,自引:3,他引:5  
室内空调设计温度和新风量对热舒适,室内空气质量及能耗量有重要影响,然而对它们之间相互关系进行研究的文献却较少。通过计算机模拟空调系统在7种室内设计温度和7种新风量条件下的运行情况,得到不同的设计条件组合对热舒适、人体感觉空气质量及建筑能耗量的影响。基于这项分析,提出了此办公建筑合理的室内设计温度和新风量取值。  相似文献   

7.
This study focuses on assessing the effects of the indoor climate in typical multi-storey hostels in Malaysia on student occupants through objective, subjective and evidence based prioritisation measurements. The objective measurements consisted of operative temperature; daylight ratio; luminance and indoor noise level. The subjective measurements were sampled from the student occupants' thermal, visual, acoustics and overall indoor comfort votes. The prioritisation measurement using Multiple Linear Regression and Friedman Tests assessed the relationship between physical indoor thermal, visual and acoustics conditions and students' overall indoor comfort perception vote. Findings suggest that subjective sensor ratings were significantly more reliable than objective measurements at predicting overall indoor comfort. Moreover, students living in hostel rooms with projected balconies voted that they were more satisfied with their indoor condition than the ones living in rooms without projected balconies. The results of this study also provide evidence that student occupants were more concerned with their rooms' thermal condition then followed by acoustics and finally visual conditions.  相似文献   

8.
To explore the relationship between thermal history and indoor comfort, surveys and measurements were conducted in Seoul, Korea and Yokohama, Japan. Fifty-two subjects were recruited from university campuses in Seoul and Yokohama during the hot season in August 2002. To collect information regarding people's daily thermal history, background questions (a thermal diary) were completed by subjects during the 24 h prior to entering in a climate chamber. Subjects changed into uniform clothing ensembles and complete thermal diary questions just prior to entering the chamber which was pre-conditioned to 28 °C and 50% relative humidity. Subjects entered the chamber and completed a set of thermal comfort questions at 10-min intervals for 1 h. Thermal history, prior to the chamber experiment, influenced the thermal sensation in chamber. Though the physical conditions in the climate chamber were identical (28 °C, 50% rh), Yokohama subjects responded with cooler thermal sensations than Seoul subjects. These subjects experienced hotter weather conditions (than the Seoul subjects) and voted that they felt cooler than the Seoul subjects who experienced cooler temperatures prior to entering the chamber. It was also found that subjects who use air-conditioning at home responded with warmer thermal sensations than the subjects who did not use air-conditioning. These results indicate that there is a strong interaction and influence of our experience with outdoor weather and our indoor thermal comfort.  相似文献   

9.
以徽州传统民居为研究对象,通过对当地一幢典型传统民居进行为期一年的室内多项环境参数现场测试以及连续监测,从舒适性角度对民居室内环境进行研究。结果表明:徽州传统民居具有"冬冷夏凉"特性;夏季自然通风、遮阳以及隔热性能良好,其室内热环境较为适宜;冬季防寒保温及密闭性效果不佳,其室内热舒适性差;过渡季(春、秋季)室内热环境较好,人体热舒适性好。徽州传统民居室内具有较好的声环境,但是光环境不佳,大部分时段不能达到现代建筑采光设计标准。  相似文献   

10.
Y. Zhang  H. Chen  J. Wang  Q. Meng 《Indoor air》2016,26(5):820-830
We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China.  相似文献   

11.
商场建筑能耗不仅与围护结构和设备有关,还与室内环境有关。为了了解重庆商场热环境状况,本文选择了沙坪坝区4座全年使用中央空调系统的大型商场进行室内温、湿度测量。结果显示,多层商场冬季楼层温度梯度明显,顶层温度普遍高于18℃,夏季各商场温度为24~26℃,一些商场出现室内温度冬季高于夏季的倒置现象,造成能源浪费。针对人们感觉冬季商场偏热的现象,本文从商场顾客着装分析说明商场舒适温度不同于其他空调建筑,应从舒适、经济、节能来调控商场室内环境。  相似文献   

12.
为研究上海地区人体热感觉和适应性热舒适现状,通过环境参数测量和问卷调查结合的方式来分析和探讨室内外气候条件、服装热阻、热感觉等关系。本文主要涉及自然通风建筑内人体热感觉和热中性温度随季节变化的关系。结果表明:在适应性热舒适研究中,人体中性温度与室外环境温度具有较强的相关性,得到的上海地区适应性热舒适模型可为适合我国自身特点的热舒适研究提供依据。  相似文献   

13.
A new method is described in this article for selecting indoor temperature and indoor relative humidity to achieve minimum energy consumption for a required indoor thermal comfort level which is evaluated with indoor effective temperature. This method is derived from a central air-conditioning system and is based on our investigation that under a same indoor effective temperature, the system cooling load and the system energy consumption increase with an increase of indoor temperature. As such, energy consumption cannot be reduced with increasing indoor temperature for a given human thermal comfort level. In order to reduce energy consumption while keeping a same indoor thermal comfort level, indoor temperature and relative humidity may be determined with the proposed method described in this article. With the proposed method, a parameter variation study has also been conducted, which suggests that for a given indoor effective temperature, a combination of high indoor relative humidity and low indoor temperature be generally taken. The proposed method is based on the central air-conditioning system; yet it can be easily extended to other systems.  相似文献   

14.
Indoor thermal climate is an important issue affecting the health and productivity of building occupants. In the designing of commercial air-conditioning systems, it is believed that the conventional fixed temperature set point concept is limited because indoor comfort temperature depends on the business culture, such as the nature of activities and dress code of occupants, etc. Researchers have been interested in investigating adaptive temperature control for a realistic in-situ control of comfort. Unfortunately, those studies put great emphasis on energy saving opportunities and sometimes might result in thermal discomfort to individuals. This study argues that complaints of thermal discomfort from individuals, despite representing only a small portion of the population, should not be ignored and can be used to determine the temperature setting for a population in air-conditioned environment. In particular, findings of a new notion of Bayesian adaptive comfort temperature (BACT) in air-conditioned buildings in a humid and subtropical climate like Hong Kong are reported, and the adaptive interface relationship between occupants’ complaints of thermal discomfort and indoor air temperature is determined. This BACT algorithm is intended to optimise the acceptance of thermal comfort, as determined by physical measurements and subjective surveys.  相似文献   

15.
Sleep thermal environments substantially impact sleep quality. To study the sleep thermal environment and thermal comfort in China, this study carried out on-site monitoring of thermal environmental parameters in peoples’ homes, including 166 households in five climate zones, for one year. A questionnaire survey on sleep thermal comfort and adaptive behavior was also conducted. The results showed that the indoor temperature for sleep in northern China was more than 4°C higher than that in southern China in winter, while the indoor temperatures for sleep were similar in summer. Furthermore, 70% of people were satisfied with their sleep thermal environment. Due to the use of air conditioning and window opening in various areas in summer, people were satisfied with their sleep thermal environments. Due to the lack of central heating in the southern region in winter, people feel cold and their sleep thermal environment needs further improvement. The bedding insulation in summer and winter in northern China was 1.83clo and 2.67clo, respectively, and in southern China was 2.21clo and 3.17clo, respectively. Both northern China and southern China used air conditioning only in summer. People in southern China opened their windows all year, while those in northern China opened their windows during the summer and transitional periods.  相似文献   

16.
夏热冬冷地区冬季室内阴冷潮湿、热舒适性差,属于非传统供暖区。通过对重庆村镇住宅供暖现状的调研,了解了该地区冬季室内热舒适状况和供暖需求。选取重庆村镇地区某住户,对实际供暖系统运行状况进行了测试,针对不同供水温度进行了供暖效果和运行能耗对比分析。结果表明,空气源热泵结合毛细管地板辐射供暖系统供水温度为35、40、45、50℃时均能满足冬季供暖需求,35℃工况下的耗电量仅占40、45、50℃工况下的83.0%、66.8%和57.7%。  相似文献   

17.
通过调查问卷结合实际测试,研究了大连地区过渡季节民用住宅室内热湿环境状况,分析了建筑围护结构的保温性、蓄热性、住宅形式、位置和朝向等因素对室内温湿度以及居住者热湿感觉的影响,为了解目前北方地区现有住宅过渡季节室内热湿环境状况提供了参考.  相似文献   

18.
A courtyard is an architectural design element which is often known as microclimate modifiers and is responsible to increase the indoor occupant comfort in traditional architecture. The aim of this study is to conduct a parametric evaluation of courtyard design variants in a residential building of different climates with a focus on indoor thermal comfort and utility costs. A brute-force approach is applied to generate a wide range of design alternatives and the simulation workflow is conducted by Grasshopper together with the environmental plugins Ladybug and Honeybee. The main study objective is the evaluation of the occupant thermal comfort in an air-conditioned residential building, energy load, and cost analysis, derived from different design variables including courtyard geometry, window-to-wall ratio, envelope materials, heating, and cooling set-point dead-bands, and building geographical location. Furthermore, a Deep Learning model is developed using the inputs and outputs of the simulation and analysis to transform the outcomes into the algorithmic and tangible environment feasible for predictive applications. The results suggest that regarding the thermal loads, costs, and indoor thermal comfort index (PMV), there are high correlations between the outdoor weather variation and dead-band ranges, while in extreme climates such as Singapore, courtyard spaces might not be efficient enough as expected. Finally, the highly accurate deep learning model is also developed, delivering superior predictive capabilities for the thermal comfort and utility costs of the courtyard designs.  相似文献   

19.
The similarities and differences are explored in both the aims and the methods between post-occupancy evaluations and field studies of thermal comfort in buildings. The interpretations of the field study results are explored, especially the ways the results differ from laboratory experiments. Particular attention is drawn to the dynamic nature of the interaction between buildings and their occupants. Answers to questions of the type used in post-occupancy evaluations are compared with results from field studies of thermal comfort, and the implications of these findings for the evaluation of buildings and the conduct of post-occupancy evaluation are explored. Field studies of thermal comfort have shown that the way in which occupants evaluate the indoor thermal environment is context-dependent and varies with time. In using occupants as part of the means of measuring buildings, post-occupancy evaluations should be understood as reflecting the changing nature of the relationship between people, the climate and buildings. Surveys are therefore measuring a moving target, and close comparisons based on such surveys need to take this in to account.  相似文献   

20.
It is possible to evaluate the energy demand as well as the parameters related to indoor thermal comfort through building energy simulation tools. Since energy demand for heating and cooling is directly affected by the required level of thermal comfort, the investigation of the mutual relationship between thermal comfort and energy demand (and therefore operating costs) is of the foremost importance both to define the benchmarks for energy service contracts and to calibrate the energy labelling according to European Directive 2002/92/CE. The connection between indoor thermal comfort conditions and energy demand for both heating and cooling has been analyzed in this work with reference to a set of validation tests (office buildings) derived from a European draft standard. Once a range of required acceptable indoor operative temperatures had been fixed in accordance with Fanger's theory (e.g. −0.5 < PMV < −0.5), the effective hourly comfort conditions and the energy consumptions were estimated through dynamic simulations. The same approach was then used to quantify the energy demand when the range of acceptable indoor operative temperatures was fixed in accordance with de Dear's adaptive comfort theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号