首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strain-gauge procedure that enables determination of the crack-tip toughness ( K I0) from bending-strength tests is described. The procedure is applied to coarse-grained alumina and yields an average K I0 value of 2.51 MPa·m1/2, with a standard deviation of 0.16 MPa·m1/2.  相似文献   

2.
Near fully dense ZrO2(3Y)/Fe3Al composites with significantly improved fracture toughness were synthesized by hot-press sintering at 1350°C. High fracture toughness and bending-strength values, 36 MPa·m1/2 and 1321 MPa, respectively, were achieved in 40 vol% Fe3Al composite ceramics, whereas those same values for ZrO2(3Y) alone were 10 MPa·m1/2 and 988 MPa, respectively. Microscopic observation of the crack path revealed that Fe3Al particle uniformly dispersed in the matrix have obvious crack-bridging effect. Improved thermal-shock resistance was also obtained, which was attributed to higher toughness, thermal conductivity, and lower Young's modulus by adding of Fe3Al particles.  相似文献   

3.
Boron carbide/titanium diboride composites with 20 and 40 vol% particulate TiB2 and various amounts of free carbon were investigated with respect to microcrack toughening. In agreement with previous work, the mere addition of TiB2 was found to raise the toughness from 2.2 MPa·m1/2 up to 3.0 and 3.5 MPa·m1/2, respectively. A further and very significant increase of composite toughness up to 6.0 MPa·m1/2 was discovered upon the incorporation of free carbon. SEM and TEM observations reveal that this toughening is associated with microcracking at B4C-TiB2 phase boundaries. Microcracking is triggered by thin carbon interlayers, which are located at hetero interfaces and supply a weak fracture path.  相似文献   

4.
The strength, S , of ceramic and glass fibers often can be estimated from fractographic investigation using the fracture mirror radius, r m, and the relationship S = A m/( r m)1/2, where A mis the "mirror constant." The present work estimates the value of A mfor Tyranno® Si-Ti-C-O fibers in situ in a three-dimensional woven SiC/SiC-based composite to be 2.50 ± 0.09 MPa·m1/2. This value is within the range of 2–2.51 MPa·m1/2 previously obtained for nominally similar Nicalon® Si-C-O fibers.  相似文献   

5.
C addition (2 wt%) to MoSi2 acted as a deoxidant, removing the otherwise ubiquitous siliceous grain boundary phase in hot-pressed samples, and causing formation of SiC and Mo5Si3C1 (a variable-composition Nowotny phase). Both hardness and fracture toughness of the C-containing alloy were higher than those of the C-free (and oxygen-rich) material; more significantly, the fracture toughness of the MoSi2+ 2% C alloy increased from 5.5 MPa·m1/2 at 800°C to ∼11.5 MPa·m1/2 at 1400°C.  相似文献   

6.
A procedure was used that made it possible to determine the R -curve for piezoelectric ceramics from tensile strength tests conducted with Knoop-damaged specimens. The resulting crack-tip toughness K I0 was 0.6 MPa·m1/2, and the R -curve starting from this value increased to 1.4 MPa·m1/2 within a 0.7 mm crack extension.  相似文献   

7.
Three-dimensional (3D) carbon fiber reinforced SiC and Si3N4 composites have been fabricated using repeated infiltration of an organosilicon slurry under vacuum and pressure. Open porosity of the infiltrated body was reduced from 40% after the first infiltration to approximately 8% after the seventh cycle. Further reduction of open porosity to less than 3% was accomplished by hot-press densification. The maximum values of flexural strength and fracture toughness were, respectively, 260 MPa and 7.3 MPa·m1/2for C/Si3N4 composites, and 185 MPa and 6 MPa·m1/2 for C/SiC composite.  相似文献   

8.
The Mode I fracture toughness ( K I C ) of a small-grained Si3N4 was determined as a function of hot-pressing orientation, temperature, testing atmosphere, and crack length using the single-edge precracked beam method. The diameter of the Si3N4 grains was <0.4 µm, with aspect ratios of 2–8. K I C at 25°C was 6.6 ± 0.2 and 5.9 ± 0.1 MPa·m1/2 for the T–S and T–L orientations, respectively. This difference was attributed to the amount of elongated grains in the plane of crack growth. For both orientations, a continual decrease in K IC was observed through 1200°C, to ∼4.1 MPa·m1/2, before increasing rapidly to 7.5–8 MPa·m1/2 at 1300°C. The decrease in K IC through 1200°C was a result of grain-boundary glassy phase softening. At 1300°C, reorientation of elongated grains in the direction of the applied load was suggested to explain the large increase in K IC. Crack healing was observed in specimens annealed in air. No R -curve behavior was observed for crack lengths as short as 300 µm at either 25° or 1000°C.  相似文献   

9.
The influence of alumina content (0-15 wt% Al2O3) on the indentation strength, fracture toughness ( K I c ), and crystal structure of fluorcanasite (Al2O3-CaO-F-K2O-Na2O-SiO2) glass-ceramics was analyzed. Increasing the Al2O3 content from 0 wt% (CAN0) to 8 wt% (CAN8) caused the mean indentation strength and K I c values to decrease from 213 ± 14 MPa and 2.7 ± 0.1 MPa·m1/2, respectively, for the CAN0 glass-ceramic to 78 ± 16 MPa and 1.3 ± 0.2 MPa·m1/2, respectively, for the CAN8 glass-ceramic. Increased Al2O3 concentrations (0-15 wt%) significantly affected the crystal size, crystal shape, aspect ratio, and crystal aggregation characteristics of the fluorcanasite glass-ceramics. The addition of greaterthan equal to8 wt% of Al2O3 to fluorcanasite glass caused a transformation from canasite to leucite.  相似文献   

10.
The 1.5- to 3-mol%-Y2O3-stabilized tetragonal ZrO2 (Y-TZP) and Al2O3/Y-TZP nanocomposite ceramics with 1 to 5 wt% of alumina were produced by a colloidal technique and low-temperature sintering. The influence of the ceramic processing conditions, resulting density, microstructure, and the alumina content on the hardness and toughness were determined. The densification of the zirconia (Y-TZP) ceramic at low temperatures was possible only when a highly uniform packing of the nanoaggregates was achieved in the green compacts. The bulk nanostructured 3-mol%-yttria-stabilized zirconia ceramic with an average grain size of 112 nm was shown to reach a hardness of 12.2 GPa and a fracture toughness of 9.3 MPa·m1/2. The addition of alumina allowed the sintering process to be intensified. A nanograined bulk alumina/zirconia composite ceramic with an average grain size of 94 nm was obtained, and the hardness increased to 16.2 GPa. Nanograined tetragonal zirconia ceramics with a reduced yttria-stabilizer content were shown to reach fracture toughnesses between 12.6–14.8 MPa·m1/2 (2Y-TZP) and 11.9–13.9 MPa·m1/2 (1.5Y-TZP).  相似文献   

11.
The mode I, mode II, and combined mode Imode II fracture behavior of ceria-doped tetragonal zirconia polycrystalline (Ce-TZP) ceramic was studied. The single-edge-precracked-beam (SEPB) samples were fractured using the asymmetric four-point-bend geometry. The ratio of mode I to mode II loading was varied by varying the degree of asymmetry in the four-point-bend geometry. The minimum strain energy density theory best described the mixed-mode fracture behavior of Ce-TZP with the mode I fracture toughness, K IC= 8.2 ± 0.6 MPa·m1/2, and the mode II fracture toughness, KIIC= 8.6± 1.3 MPa·m1/2.  相似文献   

12.
High-quality alumina ceramics were fabricated by a hot pressing with MgO and SiO2 as additives using α-Al2O3-seeded nanocrystalline γ-Al2O3 powders as the raw material. Densification behavior, microstructure evolution, and mechanical properties of alumina were investigated from 1250°C to 1450°C. The seeded γ-Al2O3 sintered to 98% relative density at 1300°C. Obvious grain growth was observed at 1400°C and plate-like grains formed at 1450°C. For the 1350°C hot-pressed alumina ceramics, the grain boundary regions were generally clean. Spinel and mullite formed in the triple-grain junction regions. The bending strength and fracture toughness were 565 MPa and 4.5 MPa·m1/2, respectively. For the 1300°C sintered alumina ceramics, the corresponding values were 492 MPa and 4.9 MPa·m1/2.  相似文献   

13.
The use of monoclinic ZrO2 as an additive improves the mechanical properties of TiB2-based composites without the use of stabilizers. In particular, TiB2-30% ZrO2 compacts exhibited a transverse rupture strength of 800 MN/m2, few pores, and a KI c of 5 MPa·m1/2. The high strength and toughness are thought to result mainly from the presence of partially stabilized tetragonal ZrO2 and from solid solution of (TiZr)B2 formed in sintering.  相似文献   

14.
LaCoO3 and La0.8Ca0.2CoO3 ceramics show a nonelastic stress–strain behavior during four-point bending experiments where hysteresis loops are observed during loading–unloading cycles. Permanent strain is stored in the material after unloading, and a mechanism related to ferroelastic domain switching in the rhombohedral perovskite is proposed. Domain switching in the materials has been confirmed using X-ray diffractometry. Fracture toughnesses of La0.8Ca0.2CoO3 measured using single-edge notched beam and single-edge V-notched beam methods coincide and are equal to 2.2 MPa·m1/2 at room temperature and decrease to ∼1 MPa·m1/2 at temperatures >300°C. A decrease in fracture toughness is consistent with ferroelastic behavior, because the rhombohedral distortion decreases with increasing temperature.  相似文献   

15.
The effect of thermally induced microcracks on the fracture toughness and fractal dimension of fully crystalline lithia disilicate glass-ceramics was studied. The fracture toughness, K IC, for the nonmicrocracked lithia disilicate, 3.02 ± 0.12 MPa·m1/2, was significantly greater than the value of 1.31 ± 0.05 MPa·m1/2 for the microcracked specimens. The fractal dimensional increment, D *, was 0.24 ± 0.01 for nonmicrocracked lithia disilicate specimens compared with a value of 0.18 ± 0.01 for the microcracked specimens. The relationship between K IC and D * implies that the two materials exhibit dissimilar fracture behavior because of microstructural differences. Estimates of the characteristic length involved in the fracture process, a 0, indicate that the materials have an identical fracture process at the atomic level. This apparent contradiction may be explained by the scale on which the measurements were taken. It is suggested that fractal analysis at the atomic level would yield equivalent D * values for the two different microstructures.  相似文献   

16.
The influence of a strong/weak interface ratio on the mechanical properties of Si3N4/BN-based layered composites was studied. The ratio was controlled by the number of BN spots between the adjacent Si3N4 layers. By increasing the BN interface area from 0% to 72%, fracture toughness increased from 7.7 to 10.9 MPa·m1/2, and bending strength decreased from 1275 to 982 MPa. Fracture toughness was improved from 8.6 to 10.1 MPa·m1/2 by additional heat treatment of samples containing 2 vol%β-Si3N4 seed particles. The bending strength of samples with 35% weak BN interfaces, measured perpendicular and parallel to layer alignment, was 1260 and 1240 MPa, respectively. This confirmed the two-directional isotropy of layered samples.  相似文献   

17.
Zirconium diboride (ZrB2) reinforced by nano-SiC whiskers has been prepared by spark plasma sintering (SPS). Of most interest is the densification of ZrB2–SiCw composites accomplished by SPS at a temperature as low as 1550°C. The relative density of ZrB2–SiCw composites could reach to 97% with an average grain size of 2–3 μm. Both flexural strength and fracture toughness of the composites were improved with increasing amount of SiCw. Flexural strengths ranged from 416 MPa for monolithic ZrB2 to over 545 MPa for ZrB2–15 vol% SiCw composites. Similarly, fracture toughness also increased from 5.46 MPa·m1/2 to more than 6.81 MPa·m1/2 in the same composition range. The relative density of ZrB2–SiCw composites could be further improved to near 100% by adding some sintering aids such as AlN and Si3N4; however, the effects of different sintering additives on the mechanical properties of the composites were different.  相似文献   

18.
Dense TiB ceramics (99.6% of theoretical) with a grain size of ∼5 µm have been fabricated by reaction hot pressing of TiB2 and titanium for 2 h at 1900°C and 28.5 MPa. The TiB ceramics exhibit a fracture toughness ( KIC ) of 4.5 MPa·m1/2 and a bending strength (sigmab) of 360 MPa. Electrical resistivity (rho) is 3.4 × 10-7 Omega·m at room temperature.  相似文献   

19.
YPSZ/Al2O3-platelet composites were fabricated by conventional and tape-casting techniques followed by sintering and HIPing. The room-temperature fracture toughness increased, from 4.9 MPa·m1/2 for YPSZ, to 7.9 MPa·m1/2 (by the ISB method) for 25 mol% Al2O3 platelets with aspect ratio = 12. The room-temperature fiexural strength decreased 21% and 30% (from 935 MPa for YPSZ) for platelet contents of 25 vol% and 40 vol%, respectively. Al2O3 platelets improved the high-temperature strength (by 110% over YPSZ with 25 vol% platelets at 800°C and by 40% with 40 vol% platelets at 1300°C) and fracture toughness (by 90% at 800°C and 61% at 1300°C with 40 vol% platelets). An amorphous phase at the Al2O3-platelet/YPSZ interface limited mechanical property improvement at 1300°C. The influence of platelet alignment was examined by tape casting and laminating the composites. Platelet alignment improved the sintered density by >1% d th , high-temperature strength by 11% at 800°C and 16% at 1300°C, and fracture toughness by 33% at 1300°C, over random platelet orientation.  相似文献   

20.
Measurements of threshold stress intensities for crack growth, K h, of three polycrystalline SiC materials were attempted using interrupted static fatigue tests at 1200°–1400°C. Weibull statistics were used to calculate conservative Kth values from test results. The K th of a chemically vapor deposited β-SiC could not be determined, as a result of its wide variations in strength. The Kth ≥ 3.3,2.2, and 1.7 MPa·m1/2 for an Al-doped sintered α-SiC; and Kth ≥ 3.1, 2.7, and 2.2 MPa·m1/2 for a hot isostatically pressed α-SiC, both at 1200°, 1300°, and 1400°C, respectively. A damage process concurrent with subcritical crack growth was apparent for the sintered SiC at 1400°C. The larger Kth 's for the HIPed SiC (compared to the sintered SiC) may be a result of enhanced viscous stress relaxation caused by the higher silica content and smaller grain size of this material. Values measured at 1300° and 1400°C were in good agreement with the Kth's predicted by a diffusive crack growth model, while the measured Kth 's were greater than the predicted ones at 1200°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号