首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using a bio-mechanochemical approach combining mechanochemistry (ball milling) and green synthesis for the first time, silver nanoparticles (Ag NPs) with antibacterial activity were successfully synthesized. Concretely, eggshell membrane (ESM) or Origanum vulgare L. plant (ORE) and silver nitrate were used as environmentally friendly reducing agent and Ag precursor, respectively. The whole synthesis took 30?min in the former and 45?min in the latter case. The photon cross-correlation measurements have shown finer character of the product in the case of milling with Origanum. UV–Vis measurements have shown the formation of spherical NPs in both samples. TEM study has revealed that both samples are composites of nanosized silver nanoparticles homogenously dispersed within the organic matrices. It has shown that the size and size distribution of the silver nanoparticles is smaller and more uniform in the case of eggshell membrane matrix implying lower silver mobility within this matrix. The antibacterial activity was higher for the silver nanoparticles synthesized with co-milling with Origanum plant than in the case of milling with eggshell membrane.  相似文献   

2.
Dextran-capped silver nanoparticles were synthesized by reducing silver nitrate with NaBH4 in the presence of dextran as capping agent. The characters of silver nanoparticles were investigated using UV-Vis spectrophotometer, nano-grainsize analyzer, X-ray diffraction, and transmission electron microscopy. Results showed that the silver nanoparticles capped with dextran were in uniform shape and narrow size distribution. Moreover, compared with polyvinylpyrrolidone (PVP)-capped silver nanoparticles, the dextran-capped ones possessed better stability. Antibacterial tests of these silver nanoparticles were carried out for Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Results suggested that the dextran-capped silver nanoparticles had high antibacterial activity against both Gram-positive and Gram-negative bacteria. In addition, the cytotoxicity in vitro of the dextran-capped silver nanoparticles was investigated using mouse fibrosarcoma cells (L929). The toxicity was evaluated by the changes of cell morphology and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Results indicated that these silver nanoparticles had slight effect on the survival and proliferation of L-929 cells at their minimal inhibitory concentration (MIC). After modified by dextran, the physiochemical properties of the silver nanoparticles had been improved. We anticipated that these dextran-capped silver nanoparticles could be integrated into systems for biological and pharmaceutical applications.  相似文献   

3.
The development of new and simple green chemical methods for synthesizing colloidal solutions of functional nanoparticles is desirable for environment-friendly applications. In the present work, we report a feasible method for synthesizing colloidal solutions of silver nanoparticles (Ag NPs) based on the modified Tollens technique. The Ag NPs were stabilized by using oleic acid as a surfactant and were produced for the first time by the reduction of silver ammonium complex [Ag(NH3)2]+(aq) by glucose with UV irradiation treatment. A stable and nearly monodisperse aqueous Ag NPs solution with average-sized particles (~ 9–10 nm) was obtained. The Ag NPs exhibited high antibacterial activity against both Gram-negative Escherichia Coli (E. coli) and Gram-positive Staphylococcus aureus bacteria. Electron microscopic images and analyses provided further insights into the interaction and bactericidal mechanism of the Ag NPs. The proposed method of synthesis is an effective way to produce highly bactericidal colloidal solutions for medical, microbiological, and industrial applications.  相似文献   

4.
Synthesis and antibacterial properties of silver nanoparticles   总被引:14,自引:0,他引:14  
Nanometer sized silver particles were synthesized by inert gas condensation and co-condensation techniques. Both techniques are based on the evaporation of a metal into an inert atmosphere with the subsequent cooling for the nucleation and growth of the nanoparticles. The antibacterial efficiency of the nanoparticles was investigated by introducing the particles into a media containing Escherichia coli. The antibacterial investigations were performed in solution and on petri dishes. The silver nanoparticles were found to exhibit antibacterial effects at low concentrations. The antibacterial properties were related to the total surface area of the nanoparticles. Smaller particles with a larger surface to volume ratio provided a more efficient means for antibacterial activity. The nanoparticles were found to be completely cytotoxic to E. coli for surface concentrations as low as 8 microg of Ag/cm2.  相似文献   

5.
The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag(+) by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag(+) has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.  相似文献   

6.
壳聚糖修饰银纳米颗粒的制备及抗菌性能研究   总被引:2,自引:0,他引:2  
采用液相化学还原法,以壳聚糖为修饰剂,硼氢化钠为还原剂,制备了壳聚糖修饰银纳米颗粒(chitosan-Ag NPs)。通过X射线粉末衍射仪、透射电子显微镜、傅立叶变换红外光谱仪等对所制备样品的结构和形貌进行了表征。结果表明,所制备纳米颗粒具有面心立方Ag的晶型结构,壳聚糖通过氨基和羟基中的N、O原子与Ag+的化学键合作用修饰在纳米颗粒表面,起到了限制颗粒粒径长大和防止其团聚的作用。采用肉汤连续稀释法检测了样品对大肠杆菌和金黄色葡萄球菌的抑菌杀菌性能,结果表明chitosan-Ag NPs具有优异的抗菌性,抗菌性能受到粒径大小的影响。  相似文献   

7.
Silver nanoparticles (AgNPs) were biosynthesized via a green route using ten different plants extracts (GNP1‐ Caryota urens, GNP2‐Pongamia glabra, GNP3‐ Hamelia patens, GNP4‐Thevetia peruviana, GNP5‐Calendula officinalis, GNP6‐Tectona grandis, GNP7‐Ficus petiolaris, GNP8‐ Ficus busking, GNP9‐ Juniper communis, GNP10‐Bauhinia purpurea). AgNPs were tested against drug resistant microbes and their biofilms. These nanoparticles (NPs) were characterised using UV‐vis spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X‐ray diffraction and Image J software. Most of the AgNPs were distributed over a range of 1 of 60 nm size. The results indicated that AgNPs were antibacterial in nature without differentiating between resistant or susceptible strains. Moreover, the effect was more prominent on Gram negative bacteria then Gram positive bacteria and fungus. AgNPs inhibited various classes of microbes with different concentration. It was also evident from the results that the origin or nature of extract did not affect the activity of the NPs. Protein and carbohydrate leakage assays confirmed that the cells lysis is one of the main mechanisms for the killing of microbes by green AgNPs. This study suggests that the action of AgNPs on microbial cells resulted into cell lysis and DNA damage. Excellent microbial biofilm inhibition was also seen by these green AgNPs. AgNPs have proved their candidature as a potential antibacterial and antibiofilm agent against MDR microbes.Inspec keywords: silver, nanoparticles, antibacterial activity, nanofabrication, microorganisms, ultraviolet spectra, visible spectra, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, proteins, DNA, nanomedicine, biomedical materials, cellular biophysicsOther keywords: biofabrication, broad range antibacterial nanoparticles, antibiofilm silver nanoparticles, plant extract contribution, drug resistant microbes, UV‐vis spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X‐ray diffraction, Image J software, resistant strains, susceptible strains, Gram positive bacteria, fungus, protein leakage assays, carbohydrate leakage assays, cell lysis, DNA damage, Ag  相似文献   

8.
以浓度为88%的甲酸溶液作为纺丝溶剂,采用静电纺丝和紫外光照射还原的方法制备了含纳米银颗粒的明胶/壳聚糖纳米纤维。研究发现,壳聚糖的加入量低于明胶质量的3/16时可以得到纳米纤维,纤维平均直径随着硝酸银加入量的增大而减小,纤维表面纳米银的平均直径随着硝酸银加入量的增大而增大,在纺丝体系中硝酸银的加入量存在一个极限值。所制得含纳米银的明胶/壳聚糖纳米纤维对金黄色葡萄球菌和绿脓杆菌具有较好的抑菌性能,纺丝时加入1%硝酸银制得纳米纤维膜的抑菌率达到99%以上,这种抗菌型纳米纤维可以应用于医用敷料等领域。  相似文献   

9.
The present contribution deals with one pot method for synthesis of silver nanoparticles through green route using sulfated polysaccharide isolated from marine red algae (Porphyra vietnamensis). The obtained silver nanoparticles showed surface plasmon resonance centered at 404 nm with average particle size measured to be 13 ± 3 nm. FTIR spectra revealed the involvement of sulfate moiety of polysaccharide for reduction of silver nitrate. The capping of anionic polysaccharide on the surface of nanoparticles was confirmed by zeta potential measurement (−35.05 mV) and is responsible for the electrostatic stability. The silver nanoparticles were highly stable at wide range of pH (2-10) and electrolyte concentration (up to 10−2 M of NaCl). The dose dependent effect of synthesized silver nanoparticles revealed strong antibacterial activity against gram negative bacteria as compared to gram positive bacteria.  相似文献   

10.
The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix–polyether glycol was studied. AgNps of 4–6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia–polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20–80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO3 concentration (0.3 wt%).  相似文献   

11.
纳米银作为一种新型抑菌剂有望成为传统抑菌剂的替代品,制备稳定、高效、环保的新型纳米银抑菌产品成为当今的研究热点。本研究以葡萄籽提取液为还原剂和稳定剂,聚乙烯醇(PVA)为载体,采用一步法“绿色”生物合成出一种纳米银/聚乙烯醇复合物(AgNPs/PVA)。通过紫外-可见(UV-Vis)吸收光谱、透射电镜(TEM)、X射线衍射(XRD)等手段对合成产物进行了表征。结果表明银离子被葡萄籽提取物成功还原成纳米银并附着在PVA的表面,纳米银颗粒均匀,呈现单分散状态,粒径较小,平均粒径为14 nm左右。AgNPs/PVA对鳗弧菌、溶藻弧菌、副溶血弧菌、哈维氏弧菌、灿烂弧菌及点状气单胞菌等6种典型的水产病原菌均有显著的抑菌效果。以溶藻弧菌为指示菌,AgNPs/PVA的最小抑菌浓度(MIC)为1.1 μg/mL,最小杀菌浓度(MBC)为2.2 μg/mL。AgNPs/PVA的Zeta电位为?24.1 mV,表明纳米银颗粒间有很强的排斥力,为其稳定分散提供保障,后续实验证明制备的AgNPs/PVA具有良好的稳定性和热稳定性。以上研究结果表明,AgNPs/PVA复合材料在水产养殖病害防治中具有广阔的应用前景。   相似文献   

12.
This work reports the preparation and characterization of copolymer poly-{styrene-acrylic acid} with monomeric ratio of styrene/acrylic acid of 9:1 using benzoyl peroxide as initiator and furthermore filled with nanosilver (25 ppm and 50 ppm) in water/acetone (1:40 v/v). The nanosilver emulsion was obtained from chemical reduction using NaBH4 as reducing agent and sodium citrate as the stabilizer. The preparation of nanosilver emulsion was monitored by the appearance of a Plasmon Resonant Absorption band in a UV–visible spectrophotometer and the particles sizes were observed through TEM. Microbiological studies were performed to investigate the antimicrobial activity of this new material against the microorganisms Escherichia coli (ATCC-25922) and Staphylococcus aureus (ATCC-6538), used as reference strains. The antimicrobial activity of the poly-{styrene-acrylic acid} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not found with the poly(styrene-acrylic acid) alone. The present work suggests that silver ions are released from the polymeric matrix to the culture media and have the ability to tune the Ag+ ions released by controlling the amount of Ag nanoparticles embedded in the composite.  相似文献   

13.
High‐quality colloidal silver nanoparticles (AgNP) were synthesised via a green approach by using hydroalcoholic extracts of Malva sylvestris. Silver nitrate was used as a substrate ion while the plant extract successfully played the role of reducing and stabilising agents. The synthesised nanoparticles were carefully characterised by using transmission electron microscopy, atomic‐force microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectroscopy. The maximum absorption wavelengths of the colloidal solutions synthesised using 70 and 96% ethanol and 100% methanol, as extraction solvents, were 430, 485 and 504 nm, respectively. Interestingly, the size distribution of nanoparticles depended on the used solvent. The best particle size distribution belonged to the nanoparticles synthesised by 70% ethanol extract, which was 20–40 nm. The antibacterial activity of the synthesised nanoparticles was studied on Escherichia coli, Staphylococcus aureus and Streptococcus pyogenes using disk diffusion, minimum inhibitory concentrations and minimum bactericidal concentrations assays. The best antibacterial activity obtained for the AgNPs produced by using 96% ethanolic extract.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, colloids, particle size, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, microorganisms, nanomedicine, biomedical materialsOther keywords: Green synthesis, flower extract, Malva sylvestris, antibacterial activity, high‐quality colloidal silver nanoparticles, hydroalcoholic extracts, plant extract, reducing agents, stabilising agents, transmission electron microscopy, atomic‐force microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, UV– vis spectroscopy, colloidal solutions, particle size distribution, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, disk diffusion, minimum inhibitory concentrations, minimum bactericidal concentrations assays, ethanolic extract, size 430 nm, size 485 nm, size 504 nm, size 20 nm to 40 nm, Ag  相似文献   

14.
A simple one-step chemical reduction method was employed for the synthesis of truncated triangular silver nanoparticles (Ag-NPs). The reduction of Ag ions by sodium borohydride was performed in the presence of poly(vinyl pyrrolidone) as a stabilizing agent. The synthesized Ag-NPs were characterized by UV–Vis spectroscopy, transmission electron microscopy, dynamic light scattering, FT-Raman spectrometer and X-ray diffraction in order to study optical, morphological, compositional, and structural properties. The UV–Vis spectrum showed three plasmon peaks located at 340, 412, and 700 nm, confirmed the anisotropic Ag-NPs. The average edge length of 22 ± 5 nm was observed from TEM images for truncated triangular Ag-NPs. From XRD pattern it was confirmed that the Ag-NPs were polycrystalline in nature, with preferential orientation along (111) lattice plane. The antibacterial susceptibility of Ag-NPs-treated fabrics were tested by Kirby–Bauer disk-diffusion test and American Association of Textile Chemists and Colorists (AATCC) test method 100-2004 against Gram-positive and Gram-negative bacteria. The Ag-NPs treated fabrics showed more pronounced antibacterial activity against Gram-negative bacteria than that of Gram-positive bacteria.  相似文献   

15.
Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV–vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.  相似文献   

16.
A simple and eco‐friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV–vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy‐dispersive X‐ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of ‐15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. The highest antibacterial activity of 25 µg mL‐1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans. The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF‐7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.Inspec keywords: silver, nanoparticles, nanofabrication, botany, antibacterial activity, biomedical materials, nanomedicine, ultraviolet spectra, visible spectra, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, electrokinetic effects, microorganisms, cellular biophysics, cancerOther keywords: antibacterial activity, antifungal activity, anticancer activity, stable colloidal silver nanoparticle, Mentha pulegium, plant extract, UV‐visible spectroscopy, transmission electron microscopy, atomic force microscopy, DLS, zetasizer, energy‐dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, methanolic extract, aqueous extract, plate‐shaped silver nanoparticle, zeta potential, plasmon absorption maximum, organic compounds adsorption, biogenic silver nanoparticle, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, fluconazole‐resistant Candida albicans, MTT assay, HeLa cancer cell, MCF‐7 cancer cell, Ag  相似文献   

17.
We have prepared a series of TiO2 nanoparticles for antibacterial applications. These TiO2 nanoparticles were prepared by the hydrolysis precipitation method with Ti(OBu)4, silver nitrate and ammonia. Crystal structure, particle size, interfacial structure and UV-visible light response of the prepared nanoparticles were characterized by X-ray diffraction measurements (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRs). The XRD spectra showed that all samples were anatase structure calcined at 450 degrees C for 3 hours. The Ag doping made the peak of diffraction wider. The results of TEM showed that the nanoparticles of TiO2, N-TiO2 and 1% Ag-N-TiO2 were all spherical in shape and well distributed with a mean size of 19.8 nm, 39.2 nm and 20.7 nm, respectively. N doping caused the nanoparticle size to increase, while, when the doped amount of Ag+ increased, the TiO2 particle size decreased. The FTIR revealed that Ag and N doping of TiO2 appeared to have strong absorption by -OH group and showed the characteristic absorption band of NH4+ and Ag. The UV-Vis-DRs indicated that the absorption band of Ag-N co-doped TiO2 had red shift and that the optical absorption response (between 400 nm and 700 nm) had obvious enhancement. The antibacterial properties of nanoparticles were investigated by agar diffusion method toward Escherichia coli and Bacillus subtilis. The results indicated that both Ag- and N-doped TiO2 could increase the antibacterial properties of TiO2 nanoparticles under fluorescent light irradiation. A 1% Ag-N-TiO2 had the highest antibacterial activity with a clear antibacterial circle of 33.0 mm toward Escherichia coli and 22.8 mm toward Bacillus subtilis after cultivation for 24 hours.  相似文献   

18.
以氯化铜为铜源,水合肼为还原剂,十六烷基三甲基溴化铵(CTAB)为稳定剂,氨水为络合剂,通过液相还原法合成了纳米铜粉。通过改变还原剂浓度制备了4组不同粒径纳米铜粉末,FESEM等表征发现,随着水合肼浓度的降低,纳米铜粉粒径增加。通过肉汤稀释振荡培养法测试纳米铜的最小抑菌浓度,结果表明,随着纳米铜粒径的增加,抗菌性能降低,所合成纳米铜的最小抑菌浓度在750~3000mg/L;初步分析认为铜纳米粒子主要是通过水解或电离出铜离子而发挥抗菌作用。  相似文献   

19.
The metal nanoparticles, due to interesting features such as electrical, optical, chemical and magnetic properties, have been investigated repeatedly. Also, the mentioned nanoparticles have specific uses in terms of their antibacterial activity. The biosynthesis method is more appropriate than the chemical method for producing the nanoparticles because it does not need any special facilities; it is also economically affordable. In the current study, the silver nanoparticles (AgNPs) were obtained by using a very simple and low‐cost method via Glaucium corniculatum (L.) Curtis plant extract. The characteristics of the AgNPs were investigated using techniques including: X‐ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The SEM and TEM images showed that the nanoparticles had a spherical shape, and the mean diameter of them was 53.7 and 45 nm, respectively. The results of the disc diffusion test used for measuring the anti‐bacterial activity of the synthesised nanoparticles indicated that the formed nanoparticles possessed a suitable anti‐bacterial activity.Inspec keywords: silver, nanoparticles, antibacterial activity, nanomedicine, nanofabrication, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectraOther keywords: green synthesis, silver nanoparticles, Glaucium corniculatum Curtis extract, antibacterial activity, metal nanoparticles, biosynthesis method, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, SEM, TEM, spherical shape, disc diffusion test, Ag  相似文献   

20.
Copper oxide nanoparticles with a particle size ranging from 80 to 160 nm were prepared by a wet chemical procedure. Copper carbonate hydroxide and sodium hydroxide were used as raw materials. Copper hydroxide was generated as a precursor which was thermally decomposed to CuO nanoparticles. The nanoparticles were characterised using atomic force microscopy, X-ray diffraction and UV-visible spectrometry. The nanoparticles were tested for antibacterial activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella paratyphi and Shigella strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号