首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NP-complete Power Dominating Set problem is an “electric power networks variant” of the classical domination problem in graphs: Given an undirected graph G=(V,E), find a minimum-size set P?V such that all vertices in V are “observed” by the vertices in P. Herein, a vertex observes itself and all its neighbors, and if an observed vertex has all but one of its neighbors observed, then the remaining neighbor becomes observed as well. We show that Power Dominating Set can be solved by “bounded-treewidth dynamic programs.” For treewidth being upper-bounded by a constant, we achieve a linear-time algorithm. In particular, we present a simplified linear-time algorithm for Power Dominating Set in trees. Moreover, we simplify and extend several NP-completeness results, particularly showing that Power Dominating Set remains NP-complete for planar graphs, for circle graphs, and for split graphs. Specifically, our improved reductions imply that Power Dominating Set parameterized by |P| is W[2]-hard and it cannot be better approximated than Dominating Set.  相似文献   

2.
In the Parameterized Connected Dominating Set problem the input consists of a graph G and a positive integer k, and the question is whether there is a set S of at most k vertices in G—a connected dominating set of G—such that (i) S is a dominating set of G, and (ii) the subgraph G[S] induced by S is connected; the parameter is k. The underlying decision problem is a basic connectivity problem which is long known to be NP-complete, and it has been extensively studied using several algorithmic approaches. Parameterized Connected Dominating Set is W[2]-hard, and therefore it is unlikely (Downey and Fellows, Parameterized Complexity, Springer, 1999) that the problem has fixed-parameter tractable (FPT) algorithms or polynomial kernels in graphs in general. We investigate the effect of excluding short cycles, as subgraphs, on the kernelization complexity of Parameterized Connected Dominating Set. The girth of a graph G is the length of a shortest cycle in G. It turns out that the Parameterized Connected Dominating Set problem is hard on graphs with small cycles, and becomes progressively easier as the girth increases. More precisely, we obtain the following kernelization landscape: Parameterized Connected Dominating Set
  • does not have a kernel of any size on graphs of girth three or four (since the problem is W[2]-hard);
  • admits a kernel of size 2 k k 3k on graphs of girth at least five;
  • has no polynomial kernel (unless the Polynomial Hierarchy collapses to the third level) on graphs of girth at most six, and,
  • has a cubic ( $\mathcal {O}(k^{3})$ ) vertex kernel on graphs of girth at least seven.
While there is a large and growing collection of parameterized complexity results available for problems on graph classes characterized by excluded minors, our results add to the very few known in the field for graph classes characterized by excluded subgraphs.  相似文献   

3.
Measure & Conquer (M&C) is a prominent technique for analyzing exact algorithms for computationally hard problems, in particular, graph problems. It tries to balance worse and better situations within the algorithm analysis. This has led, e.g., to algorithms for Minimum Vertex Cover with a running time of $\mathcal{O}(c^{n})$ for some constant c??1.2, where n is the number of vertices in the graph. Several obstacles prevent the application of this technique in parameterized algorithmics, making it rarely applied in this area. However, these difficulties can be handled in some situations. We will exemplify this with two problems related to Vertex Cover, namely Connected Vertex Cover and Edge Dominating Set. For both problems, several parameterized algorithms have been published, all based on the idea of first enumerating minimal vertex covers. Using M&C in this context will allow us to improve on the hitherto published running times. In contrast to some of the earlier suggested algorithms, ours will use polynomial space.  相似文献   

4.
The Power Dominating Set problem is an extension of the well-known domination problem on graphs in a way that we enrich it by a second propagation rule: given a graph G(V,E), a set P?V is a power dominating set if every vertex is observed after the exhaustive application of the following two rules. First, a vertex is observed if vP or it has a neighbor in P. Secondly, if an observed vertex has exactly one unobserved neighbor u, then also u will be observed, as well. We show that Power Dominating Set remains $\mathcal{NP}$ -hard on cubic graphs. We design an algorithm solving this problem in time $\mathcal{O}^{*}(1.7548^{n})$ on general graphs, using polynomial space only. To achieve this, we introduce so-called reference search trees that can be seen as a compact representation of usual search trees, providing non-local pointers in order to indicate pruned subtrees.  相似文献   

5.
Inclusion/exclusion and measure and conquer are two central techniques from the field of exact exponential-time algorithms that recently received a lot of attention. In this paper, we show that both techniques can be used in a single algorithm. This is done by looking at the principle of inclusion/exclusion as a branching rule. This inclusion/exclusion-based branching rule can be combined in a branch-and-reduce algorithm with traditional branching rules and reduction rules. The resulting algorithms can be analysed using measure and conquer allowing us to obtain good upper bounds on their running times. In this way, we obtain the currently fastest exact exponential-time algorithms for a number of domination problems in graphs. Among these are faster polynomial-space and exponential-space algorithms for #Dominating Set and Minimum Weight Dominating Set (for the case where the set of possible weight sums is polynomially bounded), and a faster polynomial-space algorithm for Domatic Number. This approach is also extended in this paper to the setting where not all requirements in a problem need to be satisfied. This results in faster polynomial-space and exponential-space algorithms for Partial Dominating Set, and faster polynomial-space and exponential-space algorithms for the well-studied parameterised problem k-Set Splitting and its generalisation k-Not-All-Equal Satisfiability.  相似文献   

6.
Vertex deletion and edge deletion problems play a central role in parameterized complexity. Examples include classical problems like Feedback Vertex Set, Odd Cycle Transversal, and Chordal Deletion. The study of analogous edge contraction problems has so far been left largely unexplored from a parameterized perspective. We consider two basic problems of this type: Tree Contraction and Path Contraction. These two problems take as input an undirected graph G on n vertices and an integer k, and the task is to determine whether we can obtain a tree or a path, respectively, by a sequence of at most k edge contractions in G. For Tree Contraction, we present a randomized 4 k ? n O(1) time polynomial-space algorithm, as well as a deterministic 4.98 k ? n O(1) time algorithm, based on a variant of the color coding technique of Alon, Yuster and Zwick. We also present a deterministic 2 k+o(k)+n O(1) time algorithm for Path Contraction. Furthermore, we show that Path Contraction has a kernel with at most 5k+3 vertices, while Tree Contraction does not have a polynomial kernel unless NP ? coNP/poly. We find the latter result surprising because of the connection between Tree Contraction and Feedback Vertex Set, which is known to have a kernel with 4k 2 vertices.  相似文献   

7.
We consider a CNF formula F as a multiset of clauses: F={c 1,…,c m }. The set of variables of F will be denoted by V(F). Let B F denote the bipartite graph with partite sets V(F) and F and with an edge between vV(F) and cF if vc or $\bar{v} \in c$ . The matching number ν(F) of F is the size of a maximum matching in B F . In our main result, we prove that the following parameterization of MaxSat (denoted by (ν(F)+k)-SAT) is fixed-parameter tractable: Given a formula F, decide whether we can satisfy at least ν(F)+k clauses in F, where k is the parameter. A formula F is called variable-matched if ν(F)=|V(F)|. Let δ(F)=|F|?|V(F)| and δ ?(F)=max F′?F δ(F′). Our main result implies fixed-parameter tractability of MaxSat parameterized by δ(F) for variable-matched formulas F; this complements related results of Kullmann (IEEE Conference on Computational Complexity, pp. 116–124, 2000) and Szeider (J. Comput. Syst. Sci. 69(4):656–674, 2004) for MaxSat parameterized by δ ?(F). To obtain our main result, we reduce (ν(F)+k)-SAT into the following parameterization of the Hitting Set problem (denoted by (m?k)-Hitting Set): given a collection $\mathcal{C}$ of m subsets of a ground set U of n elements, decide whether there is X?U such that CX≠? for each $C\in \mathcal{C}$ and |X|≤m?k, where k is the parameter. Gutin, Jones and Yeo (Theor. Comput. Sci. 412(41):5744–5751, 2011) proved that (m?k)-Hitting Set is fixed-parameter tractable by obtaining an exponential kernel for the problem. We obtain two algorithms for (m?k)-Hitting Set: a deterministic algorithm of runtime $O((2e)^{2k+O(\log^{2} k)} (m+n)^{O(1)})$ and a randomized algorithm of expected runtime $O(8^{k+O(\sqrt{k})} (m+n)^{O(1)})$ . Our deterministic algorithm improves an algorithm that follows from the kernelization result of Gutin, Jones and Yeo (Theor. Comput. Sci. 412(41):5744–5751, 2011).  相似文献   

8.
In the k-Feedback Arc/Vertex Set problem we are given a directed graph D and a positive integer k and the objective is to check whether it is possible to delete at most k arcs/vertices from D to make it acyclic. Dom et al. (J. Discrete Algorithm 8(1):76–86, 2010) initiated a study of the Feedback Arc Set problem on bipartite tournaments (k-FASBT) in the realm of parameterized complexity. They showed that k-FASBT can be solved in time O(3.373 k n 6) on bipartite tournaments having n vertices. However, until now there was no known polynomial sized problem kernel for k-FASBT. In this paper we obtain a cubic vertex kernel for k-FASBT. This completes the kernelization picture for the Feedback Arc/Vertex Set problem on tournaments and bipartite tournaments, as for all other problems polynomial kernels were known before. We obtain our kernel using a non-trivial application of “independent modules” which could be of independent interest.  相似文献   

9.
10.
The Contractibility problem takes as input two graphs G and H, and the task is to decide whether H can be obtained from G by a sequence of edge contractions. The Induced Minor and Induced Topological Minor problems are similar, but the first allows both edge contractions and vertex deletions, whereas the latter allows only vertex deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed graphs H. We show that these problems can be solved in polynomial time for every fixed H when the input graph G is chordal. Our results can be considered tight, since these problems are known to be W[1]-hard on chordal graphs when parameterized by the size of H. To solve Contractibility and Induced Minor, we define and use a generalization of the classic Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen from a specified set. We prove that this variant is NP-complete even when k=2, but that it is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced Topological Minor is based on another generalization of Disjoint Paths called Induced Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show that this problem, which is known to be NP-complete when k=2, can be solved in polynomial time on chordal graphs even when k is part of the input. Our results fit into the general framework of graph containment problems, where the aim is to decide whether a graph can be modified into another graph by a sequence of specified graph operations. Allowing combinations of the four well-known operations edge deletion, edge contraction, vertex deletion, and vertex dissolution results in the following ten containment relations: (induced) minor, (induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution, and contraction. Our results, combined with existing results, settle the complexity of each of the ten corresponding containment problems on chordal graphs.  相似文献   

11.
We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

12.
An important result in the study of polynomial-time preprocessing shows that there is an algorithm which given an instance (G,k) of Vertex Cover outputs an equivalent instance (G′,k′) in polynomial time with the guarantee that G′ has at most 2k′ vertices (and thus $\mathcal{O}((k')^{2})$ edges) with k′≤k. Using the terminology of parameterized complexity we say that k-Vertex Cover has a kernel with 2k vertices. There is complexity-theoretic evidence that both 2k vertices and Θ(k 2) edges are optimal for the kernel size. In this paper we consider the Vertex Cover problem with a different parameter, the size $\mathop{\mathrm{\mbox{\textsc{fvs}}}}(G)$ of a minimum feedback vertex set for G. This refined parameter is structurally smaller than the parameter k associated to the vertex covering number $\mathop{\mathrm{\mbox {\textsc{vc}}}}(G)$ since $\mathop{\mathrm{\mbox{\textsc{fvs}}}}(G)\leq\mathop{\mathrm{\mbox{\textsc{vc}}}}(G)$ and the difference can be arbitrarily large. We give a kernel for Vertex Cover with a number of vertices that is cubic in $\mathop{\mathrm{\mbox{\textsc{fvs}}}}(G)$ : an instance (G,X,k) of Vertex Cover, where X is a feedback vertex set for G, can be transformed in polynomial time into an equivalent instance (G′,X′,k′) such that |V(G′)|≤2k and $|V(G')| \in\mathcal{O}(|X'|^{3})$ . A similar result holds when the feedback vertex set X is not given along with the input. In sharp contrast we show that the Weighted Vertex Cover problem does not have a polynomial kernel when parameterized by the cardinality of a given vertex cover of the graph unless NP ? coNP/poly and the polynomial hierarchy collapses to the third level.  相似文献   

13.
Given a graph with n vertices, k terminals and positive integer weights not larger than c, we compute a minimum Steiner Tree in $\mathcal{O}^{\star}(2^{k}c)$ time and $\mathcal{O}^{\star}(c)$ space, where the $\mathcal{O}^{\star}$ notation omits terms bounded by a polynomial in the input-size. We obtain the result by defining a generalization of walks, called branching walks, and combining it with the Inclusion-Exclusion technique. Using this combination we also give $\mathcal{O}^{\star}(2^{n})$ -time polynomial space algorithms for Degree Constrained Spanning Tree, Maximum Internal Spanning Tree and #Spanning Forest with a given number of components. Furthermore, using related techniques, we also present new polynomial space algorithms for computing the Cover Polynomial of a graph, Convex Tree Coloring and counting the number of perfect matchings of a graph.  相似文献   

14.
We introduce two hierarchies of unknown ordinal height. The hierarchies are induced by natural fragments of a calculus based on finite types and Gödel’s T, and all the classes in the hierarchies are uniformly defined without referring to explicit bounds. Deterministic complexity classes like logspace, p, pspace, linspace and exp are captured by the hierarchies. Typical subrecursive classes are also captured, e.g. the small relational Grzegorczyk classes ? * 0 , ? * 1 and ? * 2 .  相似文献   

15.
For any graph class \(\mathcal{H}\) , the \(\mathcal{H}\) -Contraction problem takes as input a graph \(G\) and an integer \(k\) , and asks whether there exists a graph \(H\in \mathcal{H}\) such that \(G\) can be modified into \(H\) using at most \(k\) edge contractions. We study the parameterized complexity of \(\mathcal{H}\) -Contraction for three different classes \(\mathcal{H}\) : the class \(\mathcal{H}_{\le d}\) of graphs with maximum degree at most  \(d\) , the class \(\mathcal{H}_{=d}\) of \(d\) -regular graphs, and the class of \(d\) -degenerate graphs. We completely classify the parameterized complexity of all three problems with respect to the parameters \(k\) , \(d\) , and \(d+k\) . Moreover, we show that \(\mathcal{H}\) -Contraction admits an \(O(k)\) vertex kernel on connected graphs when \(\mathcal{H}\in \{\mathcal{H}_{\le 2},\mathcal{H}_{=2}\}\) , while the problem is \(\mathsf{W}[2]\) -hard when \(\mathcal{H}\) is the class of \(2\) -degenerate graphs and hence is expected not to admit a kernel at all. In particular, our results imply that \(\mathcal{H}\) -Contraction admits a linear vertex kernel when \(\mathcal{H}\) is the class of cycles.  相似文献   

16.
Reasoning about the termination of equational programs in sophisticated equational languages such as Elan, Maude, OBJ, CafeOBJ, Haskell, and so on, requires support for advanced features such as evaluation strategies, rewriting modulo, use of extra variables in conditions, partiality, and expressive type systems (possibly including polymorphism and higher-order). However, many of those features are, at best, only partially supported by current term rewriting termination tools (for instance mu-term, C i ME, AProVE, TTT, Termptation, etc.) while they may be essential to ensure termination. We present a sequence of theory transformations that can be used to bridge the gap between expressive membership equational programs and such termination tools, and prove the correctness of such transformations. We also discuss a prototype tool performing the transformations on Maude equational programs and sending the resulting transformed theories to some of the aforementioned standard termination tools.  相似文献   

17.
The NP-complete problem Proper Interval Vertex Deletion is to decide whether an input graph on n vertices and m edges can be turned into a proper interval graph by deleting at most k vertices. Van Bevern et al. (In: Proceedings WG 2010. Lecture notes in computer science, vol. 6410, pp. 232–243, 2010) showed that this problem can be solved in $\mathcal {O}((14k +14)^{k+1} kn^{6})$ time. We improve this result by presenting an $\mathcal {O}(6^{k} kn^{6})$ time algorithm for Proper Interval Vertex Deletion. Our fixed-parameter algorithm is based on a new structural result stating that every connected component of a {claw,net,tent,C 4,C 5,C 6}-free graph is a proper circular arc graph, combined with a simple greedy algorithm that solves Proper Interval Vertex Deletion on {claw,net,tent,C 4,C 5,C 6}-free graphs in $\mathcal {O}(n+m)$ time. Our approach also yields a polynomial-time 6-approximation algorithm for the optimization variant of Proper Interval Vertex Deletion.  相似文献   

18.
The Pathwidth One Vertex Deletion (POVD) problem asks whether, given an undirected graph?G and an integer k, one can delete at most k vertices from?G so that the remaining graph has pathwidth at most 1. The question can be considered as a natural variation of the extensively studied Feedback Vertex Set (FVS) problem, where the deletion of at most k vertices has to result in the remaining graph having treewidth at most 1 (i.e., being a forest). Recently Philip et?al. (WG, Lecture Notes in Computer Science, vol.?6410, pp.?196?C207, 2010) initiated the study of the parameterized complexity of POVD, showing a quartic kernel and an algorithm which runs in time 7 k n O(1). In this article we improve these results by showing a quadratic kernel and an algorithm with time complexity 4.65 k n O(1), thus obtaining almost tight kernelization bounds when compared to the general result of Dell and van Melkebeek (STOC, pp.?251?C260, ACM, New York, 2010). Techniques used in the kernelization are based on the quadratic kernel for FVS, due to Thomassé (ACM Trans. Algorithms 6(2), 2010).  相似文献   

19.
We consider the $\mathcal{NP}$ -hard problem of finding a spanning tree with a maximum number of internal vertices. This problem is a generalization of the famous Hamiltonian Path problem. Our dynamic-programming algorithms for general and degree-bounded graphs have running times of the form $\mathcal{O}^{*}(c^{n})$ with c≤2. For graphs with bounded degree, c<2. The main result, however, is a branching algorithm for graphs with maximum degree three. It only needs polynomial space and has a running time of $\mathcal{O}(1.8612^{n})$ when analyzed with respect to the number of vertices. We also show that its running time is $2.1364^{k} n^{\mathcal{O}(1)}$ when the goal is to find a spanning tree with at least k internal vertices. Both running time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel use of this kind of analysis for parameterized algorithms.  相似文献   

20.
The Induced Graph Matching problem asks to find \(k\) disjoint induced subgraphs isomorphic to a given graph  \(H\) in a given graph \(G\) such that there are no edges between vertices of different subgraphs. This problem generalizes the classical Independent Set and Induced Matching problems, among several other problems. We show that Induced Graph Matching is fixed-parameter tractable in \(k\) on claw-free graphs when \(H\) is a fixed connected graph, and even admits a polynomial kernel when  \(H\) is a complete graph. Both results rely on a new, strong, and generic algorithmic structure theorem for claw-free graphs. Complementing the above positive results, we prove \(\mathsf {W}[1]\) -hardness of Induced Graph Matching on graphs excluding \(K_{1,4}\) as an induced subgraph, for any fixed complete graph \(H\) . In particular, we show that Independent Set is \(\mathsf {W}[1]\) -hard on \(K_{1,4}\) -free graphs. Finally, we consider the complexity of Induced Graph Matching on a large subclass of claw-free graphs, namely on proper circular-arc graphs. We show that the problem is either polynomial-time solvable or \(\mathsf {NP}\) -complete, depending on the connectivity of \(H\) and the structure of \(G\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号