首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous investigations suggest that the expression of K+ channels in cultured rat microglia is related to the activation status of these cells. Both, lipopolysaccharide (LPS) and agents that raise intracellular cyclic AMP have been shown to inhibit microglial proliferation. LPS also regulates the mRNA expression levels of K+ channels in cultured microglia, which led us to investigate possible regulatory interactions between K+ channels and adenosine A2a-receptors, which are coupled to the cAMP-signal transduction pathway. The selective adenosine A2a-receptor agonist CGS 21680 induced enhanced mRNA expression of both Kv1.3 and ROMK1, as well as an elevation of Kv1.3 protein. The selective adenosine A2a-receptor antagonist aminophenol (ZM 241385) and the nonselective antagonist 8-phenyltheophylline (8-PT) inhibited these effects. Elevations of cyclic AMP by use of dibutyryl cyclic AMP (dbcAMP), phosphodiesterase-inhibitor (RO 20-1724), forskolin, or cholera toxin (CTX), strongly enhanced Kv1.3-mRNA expression, but decreased ROMK1-mRNA levels. Results from experiments with actinomycin D suggest that K+ channel mRNA levels in cultured microglia were regulated by altered mRNA synthesis. Evidently, the CGS 21680-induced effects upon Kv1.3 were mediated via an increase in intracellular cyclic AMP, whereas ROMK1-mRNA expression appeared to be regulated by coupling of adenosine A2a-receptors to an alternative pathway, which involves activation of protein kinase C (PKC). It is concluded that the cyclic AMP second messenger system in microglia is not only involved in regulation of K+ channel activity, but also in regulation of de novo K+ channel synthesis.  相似文献   

2.
In membrane preparations from rat striatum, where adenosine A2A and dopamine D2 receptors are coexpressed, stimulation of adenosine A2A receptors was found to decrease the affinity of dopamine D2 receptors for dopamine agonists. We now demonstrate the existence of this antagonistic interaction in a fibroblast cell line (Ltk-) stably transfected with the human dopamine D2 (long-form) receptor and the dog adenosine A2A receptor cDNAs (A2A-D2 cells). In A2A-D2 cells, but not in control cells only containing dopamine D2 receptors (D2 cells), the selective adenosine A2A agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamido adenosine (CGS 21680) induced a 2-3-fold decrease in the affinity of dopamine D2 receptors for dopamine, as shown in competition experiments with dopamine versus the selective dopamine D2 antagonist [3H]raclopride. By contrast, activation of the constitutively expressed adenosine A2B receptors with 5'-N-ethyl-carboxamidoadenosine (NECA) did not modify dopamine D2 receptor binding. In A2A-D2 cells CGS 21680 failed to induce or induced only a small increase in adenosine-3',5'-cyclic-monophosphate (cAMP) accumulation. In D2 cells NECA- or forskolin-induced adenylyl cyclase activation was not associated with any change in dopamine D2 receptor binding. These results indicate that adenylyl cyclase activation is not involved in the adenosine A2A receptor-mediated modulation of the binding characteristics of the dopamine D2 (long-form) receptor.  相似文献   

3.
The vasodilatory effects of the adenosine analogs, 5'-N-ethylcarboxamidoadenosine (NECA), 2-[p-(2-carboxyethyl)phenethyl amino]-5'-N-ethylcarboxamidoadenosine (CGS 21680) and 2-[(2-cyclohexylethyl)amino]adenosine (CGS 22492) in human coronary, internal mammary artery and saphenous vein were examined in vitro. All produced concentration-dependent relaxations in arterial as well as venous rings contracted with 35 mM KCl. The concentration-response curves for NECA and CGS 21680 were parallel in the coronary. The adenosine A2 receptor antagonist, 9-chloro-2-(2-furyl)[1,2,4]triazolo[1,5-c]quinazolin-5-amine (CGS 15943A) significantly attenuated the relaxing response to the adenosine analogs in coronary artery. Although NECA and CGS 22492 were equally as effective at the highest concentration administered (both achieving approximately 70% relaxation at 10(-4) M) NECA (EC50 = 1.25 +/- 0.11 microM) induced greater vasodilation at lower concentrations than CGS 22492 (EC50 = 11.27 +/- 1.53 microM). CGS 21680 was the least potent of the agents tested achieving only 44% relaxation at 10(-4) M (EC50 = 4.71 +/- 0.46 microM). Coronary artery appeared to be more responsive than internal mammary artery or saphenous vein which displayed only marginal relaxation to these agents.  相似文献   

4.
Adenosine has receptor-mediated effects in a variety of cell types and is predominantly formed from ATP by a series of nucleotidase reactions. Adenosine formed intracellularly can be released by bidirectional nucleoside transport processes to activate cell surface receptors. We examined whether stimulation of adenosine receptors has a regulatory effect on transporter-mediated nucleoside release. DDT1 MF-2 smooth muscle cells, which possess nitrobenzylthioinosine-sensitive (ES) transporters as well as both adenosine A1 and A2 receptors, were loaded with the metabolically stable nucleoside analogue [3H]formycin B. N6-cyclohexyladenosine (CHA), a selective adenosine A1 receptor agonist, produced a concentration-dependent inhibition of [3H]formycin B release with an IC50 value of 2.7 microM. Further investigation revealed CHA interacts directly with nucleoside transporters with a Ki value of 3.3 microM. Neither 5'-N-ethylcarboxamidoadenosine (NECA), a mixed adenosine A1 and A2 receptor agonist, nor CGS 21680, a selective adenosine A2A receptor agonist, affected nucleoside release. We conclude that release of the nucleoside formycin B from DDT1 MF-2 cells is not regulated by adenosine A1 or A2 receptor activation.  相似文献   

5.
6.
Repeated applications of elevated K+ (100 mM) in artificial cerebrospinal fluid (CSF) were used to evoke an efflux of acetylcholine (ACh) from the in vivo rat cerebral cortex using a cortical cup technique. Elevated K+ reproducibly increased the levels of ACh in cup superfusates by a factor of 3-5-fold above basal levels (27.2 +/- 9.7 nM). The adenosine A1 receptor agonist N6-cyclopentyl adenosine (CPA), at a concentration of 10(-8) M, depressed basal, but not K(+)-evoked ACh efflux. 10(-6) M CPA increased basal, but did not alter K(+)-evoked, ACh efflux. The A2 selective agonist CGS 21680 did not alter either basal, or K(+)-evoked, ACh efflux. The inhibitory effects of 10(-8) M CPA on ACh efflux would be consistent with the presence of adenosine A1 receptors on cholinergic nerve terminals in the cerebral cortex. At a higher concentration (10(-6) M) CPA elevated basal release, possibly by activating low affinity A2 receptors. The failure of CGS 21680 (10(-8) M) to alter basal ACh release suggests an absence of high affinity A2 receptors in these terminals. Whereas elevated K+ in cup superfusates consistently enhanced ACh efflux from the cerebral cortex, this increase was not affected by either CPA or CGS 21680. High K(+)-evoked release of cerebral cortical ACh may be an inappropriate model for the study of adenosine's actions on neurotransmitter release.  相似文献   

7.
Studies were undertaken in the rat isolated renal artery in order to determine if adenosine receptor agonists were capable of inducing the release of nitric oxide from the renovascular endothelium. N6-cyclopentyladenosine (CPA) and 5'-N-ethylcarboxamidoadenosine (NECA) produced concentration-dependent relaxations in endothelium intact renal artery rings. The NECA curve was biphasic with a first phase pA50 of 6.05. The CPA curve was monophasic with a pA50 of 4.35. In the absence of endothelium the curves to both NECA and CPA were monophasic with pA50 values of 3.37 and 3.50, respectively. The A2a adenosine receptor-selective agonist CGS21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenos ine) was inactive in endothelium intact tissues. Relaxant responses to CPA and NECA in the presence of endothelium were antagonized by 8-p-sulfophenyltheophylline and by 1,3-dipropyl-8-cyclopentylxanthine only at a nonselective concentration (3 x 10(-6) M) suggesting activation of A2 adenosine receptors. The responses to CPA and NECA in the absence of endothelium are not due to activation of A1 or A2 adenosine receptor subtypes because they are resistant to blockade by these xanthines. CPA and NECA responses in the presence of endothelium were inhibited by NG-nitro-L-arginine methylester (L-NAME), a nitric oxide synthase inhibitor, but not by the cyclooxygenase inhibitor indomethacin or the K+ATP channel antagonist glibenclamide. These results suggest that the rat renal artery contains A2b adenosine receptors that are located exclusively on the endothelium and cause the release of nitric oxide.  相似文献   

8.
Whole-cell patch clamp experiments were carried out in rat striatal brain slices. In a subset of striatal neurons (70-80%), NMDA-induced inward currents were inhibited by the adenosine A2A receptor selective agonist CGS 21680. The non-selective adenosine receptor antagonist 8-(p-sulphophenyl)-theophylline and the A2A receptor selective antagonist 8-(3-chlorostyryl)caffeine abolished the inhibitory action of CGS 21680. Intracellular GDP-beta-S, which is known to prevent G protein-mediated reactions, also eliminated the effect of CGS 21680. Extracellular dibutyryl cAMP, a membrane permeable analogue of cAMP, and intracellular Sp-cAMPS, an activator of cAMP-dependent protein kinases (PKA), both abolished the CGS 21680-induced inhibition. By contrast, Rp-cAMPS and PKI 14-24 amide, two inhibitors of PKA had no effect. Intracellular U-73122 (a phospholipase C inhibitor) and heparin (an inositoltriphosphate antagonist) prevented the effect of CGS 21680. Finally, a more efficient buffering of intracellular Ca2+ by a substitution of EGTA (11 mM) by BAPTA (5.5 mM) acted like U-73122 or heparin. Hence, A2A receptors appear to negatively modulate NMDA receptor channel conductance via the phospholipase C/inositoltriphosphate/Ca2+ pathway rather than the adenylate cyclase/PKA pathway.  相似文献   

9.
We examined the effects of adenosine receptor agonists and antagonists on the discharge of mesenteric afferent nerves supplying the jejunum in pentobarbitone sodium-anaesthetized rats. Adenosine (0.03-10 mg kg(-1), i.v.), NECA (0.3-300 microg kg(-1), i.v.) and the A1 receptor agonist, GR79236 (0.3-1000 microg kg(-1), i.v.), each induced dose-dependent increases in afferent nerve activity and intrajejunal pressure, hypotension and bradycardia. The A1 receptor antagonist, DPCPX (3 mg kg(-1), i.v.), antagonized all the effects of GR79236 but only the haemodynamic effects of adenosine and NECA. The A2A receptor antagonist, ZM241385 (3 mg kg(-1), i.v.), antagonized the hypotensive effect of NECA but none of the effects of GR79236. The A2A receptor agonist, CGS21680 (0.3-300 microg kg(-1), i.v.), and the A3 receptor agonist, IB-MECA (0.3-300 microg kg(-1), i.v.), each induced only a dose-dependent hypotension. Subsequent administration of adenosine (3 mg kg(-1), i.v.) induced increases in afferent nerve activity and intrajejunal pressure and bradycardia. ZM241385 (3 mg kg(-1), i.v.) antagonized the hypotensive effect of CGS21680 but not the effects of adenosine. Bethanechol (300 microg kg(-1), i.v.) evoked increases in afferent nerve activity and intrajejunal pressure, hypotension and bradycardia. However, adenosine (3 mg kg(-1), i.v.) evoked greater increases in afferent nerve activity than bethanechol despite inducing smaller increases in intrajejunal pressure. In summary, A1 and A2B and/or A2B-like receptors evoke adenosine-induced increases in mesenteric afferent nerve activity and intrajejunal pressure in the anaesthetized rat. Furthermore, elevations in intrajejunal pressure do not wholly account for adenosine-evoked excitation of mesenteric afferent nerves.  相似文献   

10.
The systemic intraperitoneal (i.p.) administration of the adenosine A2A agonist CGS 21680 was found to dose-dependently antagonize spontaneous and amphetamine-induced (1 mg/kg i.p.) motor activity with similar ED50 values (about 0.2 mg/kg). The ratios between the ED50 values for induction of catalepsy and for antagonizing amphetamine-induced motor activity for CGS 21680, haloperidol, and clozapine were 12, 2, and > 30, respectively. Furthermore, CGS 21680 was comparably much stronger than haloperidol or clozapine at antagonizing the motor activity induced by phencyclidine (2 mg/kg subcutaneously) than motor activity induced by amphetamine (1 mg/kg i.p.). In conclusion, the present results show a clear "atypical" antipsychotic profile of the adenosine A2A agonist CGS 21680 in animal models.  相似文献   

11.
In the present study, we investigated the role of disulfide bridges and sulfhydryl groups in A2a adenosine receptor binding of the agonist 2-p-(2-carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadenosi ne (CGS 21680). To evaluate the presence of essential disulfide bridges, rat striatal membranes were incubated with [3H]CGS 21680 in the presence of dithiothreitol and binding of the agonist to membranes was measured. The amount of [3H]CGS 21680 which specifically bound, decreased progressively upon pretreatment of membranes with increasing concentrations of dithiothreitol. Pretreatment of rat striatal membranes with 12.5 mM dithiothreitol for 15 min at 25 degrees C resulted in a 2-fold decrease of A2a adenosine receptor affinity for [3H]CGS 21680, and a reduction in the maximal number of binding sites. The presence of agonist or antagonist ligands protected the A2a adenosine receptor sites from the effect of dithiothreitol. We also examined the susceptibility of A2a adenosine receptors to inactivation by the sulfhydryl alkylating reagent, N-ethylmaleimide. When rat striatal membranes were pretreated with N-ethylmaleimide for 30 minutes at 37 degrees C, a decrease in specific [3H]CGS 21680 binding was observed. Pretreatment of membranes with 1 mM N-ethylmaleimide also resulted in a 2-fold reduction of A2a adenosine receptor affinity for [3H]CGS 21680, as well as a slight decrease in the maximal number of binding sites. Neither agonist nor antagonist ligands were effective in protecting the receptor sites from inactivation by N-ethylmaleimide. In contrast, addition of 100 microM guanosine-5'-O-(3-thiotriphosphate) or 5'-guanylylimidodiphosphate were both effective in protecting the receptor sites from inactivation by N-ethylmaleimide. This protective effect was significant but not complete. Our data suggest that disulfide bridges play a role in the structural integrity of the A2a adenosine receptor, furthermore, reduced sulfhydryl groups appear to be important but we do not yet know if they are on the receptor or on the Gs alpha subunit.  相似文献   

12.
The aim of present study was to assess the role of activation of adenosine A-1 and A-2a receptors in the modulation of dopamine (DA) and glutamate release in the rat striatum by microdialysis in freely moving animals. Adenosine A-1 receptor agonist N6-cyclopentyladenosine (CPA) and A-2a receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were administered locally into the striatum through microdialysis probe. CPA (10, 100 and 500 microM) did not affect basal levels of DA or glutamate. In contrast, CGS 21680 at the concentrations of 10, 50 and 100 microM increased in a dose-dependent manner the level of DA and at 100 microM also the level of glutamate. Both agonists at the concentration of 100 microM inhibited KCl-induced (100 mM) DA and glutamate release. The present results suggest, that in physiological conditions only excitatory effects of adenosine may be observed and adenosine A-2a receptors seem to be involved. During depolarization with KCl, adenosine, by inhibiting excessive outflow of neurotransmitters mediated via A-1 and A-2a receptors, manifests its protective role as homeostatic neuromodulator.  相似文献   

13.
Accumulation of adenosine and of deoxyadenosine in the absence of adenosine deaminase activity (ADA) activity results in lymphocyte depletion and in severe combined immunodeficiency (ADA SCID), which is currently explained by direct cell death-causing effects of intracellular products of adenosine metabolism. We explored the alternative mechanisms of peripheral T-cell depletion as due to inhibition of T-cell expansion by extracellular adenosine-mediated signaling through purinergic receptors. The strong inhibition of the T-cell receptor (TCR)-triggered proliferation and of upregulation of interleukin-2 receptor alpha chain (CD25) molecules, but not the direct lymphotoxicity, were observed at low concentrations of extracellular adenosine. These effects of extracellular adenosine (Ado) are likely to be mediated by A2a receptor-mediated signaling rather than by intracellular toxicity of adenosine catabolites, because (1) poorly metabolized adenosine analogs cause the accumulation of cAMP and strong inhibition of TCR-triggered CD25 upregulation; (2) the A2a, but not the A1 or A3, receptors are the major expressed and functionally coupled adenosine receptors in mouse peripheral T and B lymphocytes, and the adenosine-induced cAMP accumulation in lymphocytes correlates with the expression of A2a receptors; (3) the specific agonist of A2a receptor, CGS21680, induces increases in [cAMP]i in lymphocytes, whereas the specific antagonist of A2a receptor, CSC, inhibits the effects of Ado and CGS21680; and (4) the increases in [cAMP]i mimic the adenosine-induced inhibition of TCR-triggered CD25 upregulation and splenocyte proliferation. These studies suggest the possible role of adenosine receptors in the regulation of lymphocyte expansion and point to the downregulation of A2a purinergic receptors on T cells as a potentially attractive pharmacologic target.  相似文献   

14.
1. We have investigated the pharmacological profile of the adenosine receptor mediating relaxation of the carbachol pre-contracted guinea-pig trachea. 2. 5'-N-Ethylcarboxamidoadenosine (NECA) and 2-chloroadenosine elicited concentration-dependent relaxations with pD2 (-log10 half-maximal values) of 6.37 +/- 0.04 and 5.25 +/- 0.09, with maximal relaxations of 73 +/- 7 and 208 +/- 38%, respectively. In the presence of 10 microM NECA, 2-chloroadenosine was able to relax the tissue further with a pD2 value of 4.74 +/- 0.11 and a maximal response of 252 +/- 68%. 3. CGS 21680, APEC and adenosine failed to elicit significant relaxations of precontracted tracheal rings at concentrations below 10 microM. At 10 microM, adenosine analogues elicited relaxations with the following order of magnitude (% relaxation): 2-chloroadenosine (75 +/- 16%) = NECA (69 +/- 16%) > APEC (25 +/- 8%) > CGS 21680 (11 +/- 2%) > adenosine (6 +/- 4%). 4. NECA-induced relaxation of precontracted trachea was antagonized by adenosine receptor antagonists with the rank order of apparent affinity (Ki, nM): PD 115,199 (27 +/- 8) = XAC (43 +/- 11) > CP 66,713(285 +/- 89) = DPCPX (316 +/- 114). 5. We conclude that the adenosine analogue-induced relaxation of guinea-pig tracheal rings fails to fit into the current classification of A2 adenosine receptors.  相似文献   

15.
The effects of intrathecally delivered adenosine agonists on allodynia induced by L5/L6 spinal nerve ligation in rats with lumbar intrathecal catheters were examined. Tactile allodynia was assessed by measuring the threshold for evoking withdrawal of the lesioned hind paw with calibrated von Frey hairs. Intrathecal administration of the A1 adenosine selective agonist, N6-(2-phenylisopropyl)-adenosine R-(-)isomer (R-PIA), produced a dose-dependent (0.3-3 nmol; ED50 = 0.6 nmol) antiallodynic action and evoked a delayed motor weakness at a dosage of 30 nmol. Intrathecal administration of the A2 adenosine selective agonist, CGS 21680 {2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride}, also produced a dose-dependent reduction in allodynia (2-40 nmol; ED50 = 15 nmol), but this effect was associated at 40 nmol after a short interval with prominent hind limb weakness. Intrathecal pretreatment with A1/A2 adenosine antagonists, caffeine (20 mumol) and 8-sulfophenyltheophylline (60 nmol), blocked antiallodynic actions of R-PIA (1 nmol) and CGS 21680 (40 nmol). Intrathecal pretreatment with the A1 adenosine-selective antagonist, 8-cyclopentyl-1,3-dimethylxanthine (3 nmol), blocked the antiallodynic effect of R-PIA (1 nmol), but even a dose as high as 10 nmol did not block the effect of CGS 21680 (40 nmol). The A2 adenosine-selective antagonist, 3, 7-dimethyl-1-propargylxanthine (3 nmol), prevented the antiallodynic effects of R-PIA (1 nmol) and CGS 21680 (40 nmol). Pretreatment with caffeine (20 mumol), 8-sulfophenyltheophylline (60 nmol) and 3,7-dimethyl-1-propargylxanthine (3 nmol) prevented the motor dysfunction induced by R-PIA (30 nmol) and CGS 21680 (40 nmol), but 8-cyclopentyl-1,3-dimethylxanthine (3 or 10 nmol) did not. Based on these effects, we hypothesize that the antiallodynic effects are mediated through the activation of spinal A1 adenosine receptors and motor dysfunction effects are mediated through A2 adenosine receptors.  相似文献   

16.
The possibility of an involvement of endogenously released GABA in the inhibitory actions of A1 and A2a adenosine receptor agonists on rat cerebral cortical neurons discharges was examined using the GABAA antagonists bicuculline and picrotoxin. The A1 agonist N6-cyclopentyladenosine (CPA), the A2a agonist CGS 21680 and the non-selective receptor agonist, adenosine, depressed neuronal firing. Applications of bicuculline or picrotoxin enhanced the spontaneous firing rate of cortical neurons, indicating the presence of ongoing GABA-ergic inhibition. Antagonism of GABAA receptors blocked the depressant effects of CGS 21680 on neuronal firing; was without effect on CPA-evoked inhibitions and tended to reduce the duration of adenosine-evoked inhibitions. These results suggest that the depressant effects of A2a receptor activation are due to an increase in GABA-ergic inhibition, likely as a consequence of increased GABA release. GABA does not appear to be involved in adenosine A1 receptor-mediated inhibition of neuronal firing.  相似文献   

17.
BACKGROUND: Adenosine is a potent vasodilator of vascular smooth muscle. Endothelium-derived nitric oxide (NO) elicits vasodilation. We have previously reported that adenosine stimulates the production of NO from porcine carotid arterial endothelial cells (PCAEC) via a receptor-mediated mechanism. This study was to determine whether adenosine also enhances NO production from human arterial endothelium and to define the involvement of adenosine A1 and A2 receptors. MATERIALS AND METHODS: Human iliac arterial endothelial cells (HIAEC) and PCAEC were harvested and cultured in dishes. NO production was evaluated with a NO electrode sensor which measured continuously real-time NO production. RESULTS: NO content of the medium bathing HIAEC and PCAEC was significantly increased with adenosine (100 micromol/L). Ethylcarboxamidoadenosine (NECA), a nonselective adenosine receptor agonist, and carboxyethyl-phenethylamino-ethylcarboxamidoadenosine (CGS-21680), a selective adenosine A2a receptor agonist, increased NO production by HIAEC and PCAEC with respective EC50 values of 3.32 and 6.96 nmol/L for NECA and 30.97 and 29.47 nmol/L for CGS-21680. Chlorofuryl-triazolo-quinazolinamine (CGS-15943; 1 micromol/L), an adenosine A1 and A2 receptor antagonist, and aminofuryltriazolotriazinyl-aminoethylphenol (ZM-241385; 1 micromol/L), a selective adenosine A2a receptor antagonist, inhibited the effect of CGS-21680. Chlorocyclopentyl-adenosine (CCPA; 1 micromol/L), an adenosine A1 receptor agonist, significantly depressed NO production by both HIAEC and PCAEC: This effect was inhibited by cyclopentyl-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist. CONCLUSIONS: The results demonstrate that adenosine A2a receptors increase, and adenosine A1 receptors decrease, the production of NO by human and porcine arterial endothelial cells.  相似文献   

18.
1. The presence of A2 receptors mediating relaxation in the rat isolated aorta has been previously demonstrated. However, agonist dependency of the degree of rightward shift elicited by 8-sulphophenyltheophylline (8-SPT) led to the suggestion that the population of receptors in this tissue is not a homogeneous one. In this study we have re-examined the effects of 8-SPT in the absence and presence of the NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester) and investigated antagonism of responses by the potent A2a receptor ligands PD 115,199 (N-[2-dimethylamino)ethyl]-N-methyl-4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3 dipropyl-1H-purin-8-yl)) benzene sulphonamidexanthine), ZM 241385 (4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-yl amino]ethyl)phenol), and CGS 21680 (2-[p-(2-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine). We have also investigated the antagonist effects of BWA1433 (1,3-dipropyl-8-(4-acrylate)phenylxanthine) which has been shown to have affinity at rat A3 receptors. 2. Adenosine, R-PIA (N6-R-phenylisopropyl adenosine), CPA (N6-cyclopentyladenosine) and NECA (5'-N-ethylcarboxamidoadenosine) all elicited relaxant responses in the phenylephrine pre-contracted rat isolated aorta with the following potency order (p[A50] values in parentheses): NECA (7.07 +/- 0.11) > R-PIA (5.65 +/- 0.10) > CPA (5.05 +/- 0.12) > adenosine (4.44 +/- 0.12). 3. 8-SPT (10-100 microM) caused parallel rightward shifts of the E/[A] curves to NECA (pKB = 5.23 +/- 0.16). A smaller rightward shift of E/[A] curves to CPA was observed (pA2 = 4.85 +/- 0.17). However, no significant shifts of E/[A] curves to either adenosine or R-PIA were observed. 4. In the absence of endothelium E/[A] curves to NECA and CPA were right-shifted compared to controls. However, removal of the endothelium did not produce a substantial shift of adenosine E/[A] curves, and E/[A] curves to R-PIA were unaffected by removal of the endothelium. 5. In the presence of L-NAME (100 microM) E/[A] curves to NECA and CPA were right-shifted. However, no further shift of the CPA E/[A] curve was obtained when 8-SPT (50 microM) was administered concomitantly. The locations of curves to R-PIA and adenosine were unaffected by L-NAME (100 microM). 6. In the presence of PD 115,199 (0.1 microM) a parallel rightward shift of NECA E/[A] curves was observed (pA2 = 7.50 +/- 0.19). PD 115,199 (0.1 and 1 microM) gave smaller rightward shifts of E/[A] curves to R-PIA and CPA, but E/[A] curves to adenosine were not significantly shifted in the presence of PD 115,199 (0.1 or 1 microM). 7. The presence of ZM 241385 (3 nM-0.3 microM) caused parallel rightwad shifts of NECA E/[A] curves (pKB = 8.73 +/- 0.11). No significant shifts of E/[A] curves to adenosine, CPA or R-PIA were observed in the presence of 0.1 microM ZM 241385. 8. CGS 21680 (1 microM) elicited a relaxant response equivalent to approximately 40% of the NECA maximum response. In the presence of this concentration of CGS 21680, E/[A] curves to NECA were right-shifted in excess of 2-log units, whereas E/[A] curves to R-PIA were not significantly shifted. 9. BWA1433 (100 microM) caused a small but significant right-shift of the E/[A] curve to R-PIA yielding a pA2 estimate of 4.1 IB-MECA (N6-(3-iodo-benzyl)adenosine-5(1)-N-methyl uronamide) elicited relaxant responses which were resistant to blockade by 8-SPT (p[A]50 = 5.26 +/- 0.13). 10. The results suggest that whereas relaxations to NECA (10 nM-1 microM) are mediated via adenosine A2a receptors, which are located at least in part on the endothelium, R-PIA and CPA may activate A2b receptors on the endothelium and an additional, as yet undefined site, which is likely to be located on the smooth muscle and which is not susceptible to blockade by 8-SPT, PD 115,199 or ZM 241385. This site is unlikely to be an A3 receptor since the very small shift obtained in the presence of BWA1433 (100 microM), and the low potency of IB-MECA is not consistent with the affin  相似文献   

19.
Agonist-induced desensitization has been described for the A1, A2A, and A3 adenosine receptor subtypes of the G protein-coupled receptor superfamily. Desensitization of the fourth adenosine receptor subtype, the A2B adenosine receptor (A(2B)R), has not been studied extensively. We sought to determine whether the A(2B)R is subject to agonist-induced desensitization. COS 7 cells, which exhibit endogenous expression of the A(2B)R, and transfected CHO cells, which stably express a modified rat A(2B)R bearing a 5' FLAG epitope tag, were studied. Cyclic AMP (cAMP) responsiveness to an acute challenge was measured after pretreating (desensitizing) cells with the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA). Incubation with NECA resulted in hyporesponsiveness to acute agonist challenge in both COS 7 and transfected CHO cells. Desensitized cells exhibited restoration of cAMP responses after recovery for 24 hr in growth medium. Choleratoxin-induced cAMP responses were preserved in desensitized cells, and high concentrations of NECA were unable to overcome the desensitization. Membrane levels of the epitope-tagged A(2B)R were assessed by western blot in transiently transfected COS 7 cells. The expression of epitope-tagged A(2B)Rs was not different between control and desensitized cells. In northern blot analysis, levels of endogenous A(2B)R mRNA were similar in control and desensitized COS 7 cells. We conclude that the A(2B)R is subject to agonist-induced desensitization with preserved expression of A(2B)R mRNA and protein. Uncoupling of the A2B adenosine receptor from the G protein complex may contribute to the mechanism of desensitization.  相似文献   

20.
The role of the A2A adenosine receptor in regulating voltage-sensitive calcium channels (VSCCs) was investigated in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 mM K+ could be inhibited with CGS21680, an A2A receptor-specific agonist. Both L- and N-type VSCCs were inhibited by CGS21680 treatment. Effects of adenosine receptor agonists and antagonists indicate that the typical A2A receptor mediates inhibition of VSCCs. Cholera toxin (CTX) treatment for 24 h completely eliminated the CGS21680 potency. Similar inhibitory effects on VSCCs were obtained by membrane-permeable activators of protein kinase A (PKA). These effects were blocked by Rp-adenosine-3',5'-cyclic monophosphothioate, a PKA inhibitor. The data suggest that activation of the A2A receptor leads to inhibition of VSCCs via a CTX-sensitive G protein and PKA. ATP pretreatment caused a reduction in subsequent rise in cytosolic free Ca2+ concentration induced by 70 mM K+, presumably by inactivation of VSCCs. Simultaneous treatment with ATP and CGS21680 produced significantly greater inhibition of VSCCs than treatment with CGS21680 or ATP alone. Furthermore, the CGS21680-induced inhibition of VSCCs was not affected by the presence of reactive blue 2. CGS21680 still significantly inhibited ATP-evoked Ca2+ influx without VSCC activity after cobalt or 70 mM K+ pretreatment. These data suggest that the A2A receptor-sensitive VSCCs differ from those activated by ATP treatment. Although A2A receptors induce inhibition of VSCCs as well as ATP-induced Ca2+ influx, the two inhibitory effects are clearly distinct from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号