首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 641 毫秒
1.
Heterogeneous transesterification of waste cooking palm oil (WCPO) to biodiesel over Sr/ZrO2 catalyst and the optimization of the process have been investigated. Response surface methodology (RSM) was employed to study the relationships of methanol to oil molar ratio, catalyst loading, reaction time, and reaction temperature on methyl ester yield and free fatty acid conversion. The experiments were designed using central composite by applying 24 full factorial designs with two centre points. Transesterification of WCPO produced 79.7% maximum methyl ester yield at the optimum methanol to oil molar ratio = 29:1, catalyst loading = 2.7 wt%, reaction time = 87 min and reaction temperature = 115.5 °C.  相似文献   

2.
The waste Capiz shell was utilized as raw material for catalyst production for biodiesel preparation. During calcination process, the calcium carbonate content in the waste capiz shell was converted to CaO. This calcium oxide was used as catalyst for transesterification reaction between palm oil and methanol to produce biodiesel. The biodiesel preparation was conducted under the following conditions: the mole ration between methanol and palm oil was 8:1, stirring speed was 700 rpm, and reaction temperature was 60 °C for 4, 5, and 6 h reaction time. The amount of catalyst was varied at 1, 2, 3, 4, and 5 wt %. The maximum yield of biodiesel was 93 ± 2.2%, obtained at 6 h of reaction time and 3 wt % of amount of catalyst. In order to examine the reusability of catalyst developed from waste of capiz (Amusium cristatum) shell, three transesterification reaction cycles were also performed.  相似文献   

3.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

4.
The use of MgO impregnated with KOH as heterogeneous catalysts for the transesterification of mutton fat with methanol has been evaluated. The mutton fat (fat) with methanol (1:22 M ratio) at 65 °C showed > 98% conversion to biodiesel with 4 wt% of MgO–KOH-201 (MgO impregnated with 20 wt% of KOH) in 20 min. The reaction conditions optimized were; the amount of KOH impregnation (5–20 wt%), the amount of catalyst (1.5–4 wt%, catalyst/fat), the reaction temperature (45–65 °C), fat to methanol molar ratio (1:11–1:22) and the effect of addition of water/oleic acid/palmitic acid (upto 1 wt%). Although, transesterification of fresh fat (moisture content 0.02 wt% and free fatty acids 0.002 wt%) with methanol in the presence of KOH (homogenous catalyst) resulted in the complete conversion to biodiesel, but in the presence of additional 1 wt% of either free fatty acid or moisture content, formation of soap was observed. The MgO–KOH-20 catalyst was found to tolerate additional 1 wt% of either the moisture or FFAs in the fat.  相似文献   

5.
The present work illustrates the parametric effects on biodiesel production from Hevea brasiliensis oil (HBO) using flamboyant pods derived carbonaceous heterogeneous catalyst. Activated carbon (AC) was prepared maintaining 500 °C for 1 h and steam activated at optimised values of activation time 1.5 h and temperature 350 °C. Carbonaceous support was impregnated with KOH at different AC/KOH ratios. The transesterification process was optimized and significant parameters affecting the biodiesel yield was identified by Taguchi method considering four parameters viz. reaction time, reaction temperature, methanol to oil ratio and catalyst loading. The physicochemical properties of Hevea brasiliensis methyl ester (HBME) were examined experimentally at optimised condition and found to meet the global American standards for testing and materials (ASTM). The optimum condition observed to yield 89.81% of biodiesel were: reaction time 60 min, reaction temperature 55 °C, catalyst loading 3.5wt% and methanol to oil ratio 15:1. Contribution factor revealed that among four parameters considered, catalyst loading and methanol to oil ratio have more prominent effect on biodiesel yield. The cost for preparing carbonaceous catalyst support was estimated and observed to be fairly impressive. Thus, Hevea brasiliensis oil (HBO) could be considered as suitable feedstock and flamboyant pods derived carbon as effective catalyst for production of biodiesel.  相似文献   

6.
A solid base catalyst was prepared by neodymium oxide loaded with potassium hydroxide and investigated for transesterification of soybean oil with methanol to biodiesel. After loading KOH of 30 wt.% on neodymium oxide followed by calcination at 600 °C, the catalyst gave the highest basicity and the best catalytic activity for this reaction. The obtained catalyst was characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), N2 adsorption-desorption measurements and the Hammett indicator method. The catalyst has longer lifetime and maintained sustained activity after being used for five times, and were noncorrosive and environmentally benign. The separate effects of the molar ratio of methanol to oil, reaction temperature, mass ratio of catalyst to oil and reaction time were investigated. The experimental results showed that a 14:1 M ratio of methanol to oil, addition of 6.0% catalyst, 60 °C reaction temperature and 1.5 h reaction time gave the best results and the biodiesel yield of 92.41% was achieved. The properties of obtained biodiesel are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel.  相似文献   

7.
Morpholine basic ionic liquid was synthesized with N-methyl morpholine, N-butyl bromide, and KOH by two-step method and was used to catalyze the transesterification of soybean oil with methanol to biodiesel. The structure of the catalyst were examined by 1H nuclear magnetic resonance. The effects of the molar ratio of methanol to oil, reaction temperature, and amount of catalyst on the biodiesel yield were investigated. Optimized biodiesel yield of 94.5% was achieved with catalyst amount of 3.0 wt%, and methanol to soybean oil molar ratio of 14:1 at reaction temperature of 60 °C for 6 h. The catalyst has maintained sustained activity after being employed to six cycles. The prepared biodiesel component was analyzed by gas chromatography-mass spectrometry (GC-MS) and the results showed that the biodiesel comprised of hexadecanoic acid methyl ester, 10, 13-octadecadienoic acid methyl ester, 9-octadecenoic acid methyl ester, and octadecanoic acid methyl ester, illustrating that fatty acids of soybean oil were converted completely.  相似文献   

8.
Mixed and ground activated snail shell and kaolin catalysts impregnated with KBr were investigated. The snail shell and kaolin were calcined, mixed, and ground prior to immersion with KBr solution and subsequent activation at 500 °C for 3 h. The precursor and catalysts were characterized by thermal gravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller surface area. The catalytic performance of the prepared catalysts was evaluated by transesterification of soybean oil with methanol. The effects of various parameters on biodiesel yield were investigated. A biodiesel yield of 98.5% was achieved using the catalyst prepared by 40% KBr-immersed, mixed, and ground snail shell and kaolin, which were activated at 500 °C. The transesterification conditions were as follows: reaction temperature, 65 °C; reaction time, 2 h; methanol-to-soybean oil molar ratio, 6:1; and catalyst amount (relative to the weight of soybean oil), 2.0 wt%. The solid catalyst could be reused for four times, and biodiesel yield remained over 73.6% for the fourth time.  相似文献   

9.
Biodiesel production from crude rice bran oil and properties as fuel   总被引:1,自引:0,他引:1  
This research reported on the successfully production of biodiesel by transesterification of crude rice bran oil (RBO). The process included three-steps. Firstly, the acid value of RBO was reduced to below 1 mg KOH/g by two-steps pretreatment process in the presence of sulfuric acid catalyst. Secondly, the product prepared from the first process was carried out esterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/RBO molar ratio, catalyst amount, reaction temperature and reaction time, was studied at this stage. The content of methyl ester was analyzed by chromatographic analysis. Through orthogonal analysis of parameters in a four-factor and three-level test, the optimum reaction conditions for the transesterification were obtained: methanol/RBO molar ratio 6:1, usage amount of KOH 0.9% w/w, reaction temperature 60 °C and reaction time 60 min. In the third step, methyl ester prepared from the second processing step was refined to become biodiesel. Fuel properties of RBO biodiesel were studied and compared according to ASTM D6751-02 and DIN V51606 standards for biodiesel. Most fuel properties complied with the limits prescribed in the aforementioned standards. The consequent engine test showed a similar power output compared with regular diesel but consumption rate was slightly higher. Emission tests showed a marked decrease in CO, HC and PM, however, with a slight increase in NOX.  相似文献   

10.
Cesium modified sodium zirconate (Cs-Na2ZrO3) was prepared by ionic exchange from sodium zirconate (Na2ZrO3), which was synthesized via a solid state reaction. Both ceramics, i.e., pristine Na2ZrO3 and the Cs-Na2ZrO3, were used as basic heterogeneous catalysts in biodiesel production. Soybean and Jatropha oils were used as triglyceride sources for transesterification reactions. Parameters, such as catalyst concentration (between 0.5 and 3 wt%), reaction time, different methanol/vegetable oil molar ratios, and temperature of the reaction, were evaluated. The cesium cation influence was evaluated from the basic transesterification reactivity. The results showed that the introduction of cesium significantly modified the catalytic activity in biodiesel production. Cs enhanced the reaction kinetics in obtaining biodiesel and reduced the reaction time in comparison with pristine Na2ZrO3. The results showed that Cs-Na2ZrO3 as a basic heterogeneous catalyst exhibited the best fatty acid methyl esters (FAME) conversion for soybean oil (98.8%) at 1 wt%, 30:1 methanol/oil ratio, 65 °C, and 15 min. The best conditions for Jatropha oil (90.8%) were 3 wt%, 15:1 methanol/oil ratio, 65 °C, and 1 h. The impregnation of Na2ZrO3 with cesium represents a very exciting alternative heterogeneous base catalyst for biodiesel production.  相似文献   

11.
The optimum conditions for biodiesel production by the transesterification of waste oil form the pork grilling process in the food factory in Udon Thani, Thailand, using NaOH and KOH as catalysts, has been investigated. A Box–Behnken Design (BBD) followed by a Response Surface Methodology (RSM) with 30 runs was used to assess the significance of three factors: the methanol to oil molar ratio, the amount of NaOH and KOH used, and the reaction time required to achieve the optimum percent fatty acid methyl ester (%FAME). The measured %FAME following transesterification using NaOH as a catalyst was an optimum 95.6% with a methanol to oil molar ratio of 12.2:1, a NaOH percentage mass fraction of 0.49% and a reaction time of 63 min. Using KOH as a catalyst, the %FAME was an optimum 93.0% with a methanol to oil molar ratio of 12:1, a KOH percentage mass fraction of 0.61% and a reaction time of 72 min. The coefficient of determination (R2) for regression equations were 98.55% and 93.99%, respectively. The probability value (P<0.05) demonstrated a very good significance for the regression model. The physicochemical properties of the biodiesel obtained from the waste oil met the ASTM 6751 biodiesel standard, illustrating that waste oil from the pork grilling process can be used as a raw material for biodiesel production by transesterification.  相似文献   

12.
The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. The studies were performed using the experimental setups which are working in batch and continuous regimes. The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. Also the effect of preliminary ultrasonic treatment (ultrasonic irradiation, emulsification of immiscible oil and alcohol mixture) of the initial reagents (emulsion preparation) on the stage before transesterification reaction conduction on the conversion yield was studied. We found that the preliminary ultrasonic treatment of the initial reagents increases considerably the conversion yield. Optimal technological conditions were determined to be as follows: pressure within 20-30 MPa, temperature within 573-623 K. The optimal values of the oil to alcohol ratio strongly depend on preliminary treatment of the reaction mixture. The study showed that the conversion yield at the same temperature with 96 wt.% of ethanol is higher than with 100 wt.% of methanol.  相似文献   

13.
The present work reports the production of biodiesel from Silurus triostegus Heckel fish oil (STFO) through alkaline-catalyzed transesterification by using potassium hydroxide (KOH) as an alkaline catalyst with methanol. Chemical and physical properties of the extracted oil were determined. It was found that STFO has a low acid value (1.90 mg KOH/g oil); hence no pre-treatment such as acid esterification is required to produce the biodiesel. The influence of the experimental parameters such as KOH concentration (0.25–1.0% w/w of oil), methanol to oil molar ratio (3:1, 6:1, 9:1 and 12:1), reaction temperature (32, 45 and 60 °C), reaction duration (30, 60, 90 and 120 min), type of the catalyst (potassium or sodium hydroxide) and step multiplicity (single- and two-step transesterification) on the yield of the biodiesel were investigated. The maximum biodiesel yield (96%) was obtained under the optimized parameters of the transesterification (KOH 0.50% w/w, 6:1 methanol to oil, at 32 °C for 60 min). The properties of the produced biodiesel were found to conform with the ASTM standard, indicating its suitability for internal combustion engines. Blending of the produced biodiesel with petro diesel with various volume percentages was investigated as well.  相似文献   

14.
An economic and environmentally friendly catalyst derived from waste freshwater mussel shell (FMS) was prepared by a calcination-impregnation-activation method, and it was applied in transesterification of Chinese tallow oil. The as-prepared catalyst exhibits a “honeycomb” -like structure with a specific surface area of 23.2 m2 g−1. The newly formed CaO crystals are major active phase of the catalyst. The optimal calcination and activity temperature are 900 °C and 600 °C, respectively. When the reaction is carried out at 70 °C with a methanol/oil molar ratio of 12:1, a catalyst concentration of 5% and a reaction time of 1.5 h, the FMS-catalyst is active for 7 reaction cycles, with the biodiesel yield above 90%. The experimental results indicate that the FMS can be used as an economic catalyst for the biodiesel production.  相似文献   

15.
Lithium impregnated calcium oxide has been prepared by wet impregnation method in nano particle form as supported by powder X-ray diffraction and transmission electron microscopy. Basic strength of the same was measured by Hammett indicators. Calcium oxide impregnated with 1.75 wt% of lithium was used as solid catalyst for the transesterification karanja and jatropha oil, containing 3.4 and 8.3 wt% of free fatty acids, respectively. The reaction parameters, viz., reaction temperature, alcohol to oil molar ratio, free fatty acid contents, amount of catalyst and amount of impregnated lithium ion in calcium oxide support, have been studied to establish the most suitable condition for the transesterification reaction. The complete transesterification of karanja and jatropha oils was achieved in 1 and 2 h, respectively, at 65 °C, utilizing 12:1 molar ratio of methanol to oil and 5 wt% (catalyst/oil, w/w) of catalyst. Few physicochemical properties of the prepared biodiesel samples have been studied and compared with standard values.  相似文献   

16.
In this study, a strong acidic‐type cation exchange resin was used in the transesterification of corn oil to fatty acid methyl esters (FAME). The gel‐type cation exchange resin (Purolite‐PD206) was used in H+ and Na+ forms to utilize ion‐exchange resin as effective heterogeneous catalyst in the production of biodiesel. Effect of ionic forms of ion exchange resin on free fatty acid (FFA) conversion and composition was investigated by using different amounts of ion exchange resin (12, 16, and 20 wt%), various mole ratios of methanol to oil (1:6, 1:12, and 1:18 mol/mol), reaction temperatures (63, 65, and 67°C), and reaction time (24, 36, and 48 h) during transesterification reaction. The highest FFA conversions of 73.5% and 79.45% were obtained at conditions of 20 wt% of catalyst, 65°C of reaction temperature, 18:1 as methanol to oil ratio, and 48 h of reaction time for H+ and Na+ forms of ion exchange resin, respectively. These results were obtained from regression equations established by using analysis of variance (ANOVA) model according to the experimental results of selected parameters. Gas chromatography analysis revealed that FAME is mainly composed of C16:0 (palmitic), C18:1 (oleic), and C18:2 (linoleic) acids of methyl ester.  相似文献   

17.
The present study deals with the production of biodiesel using waste fish oil. The research assesses the effect of the transesterification parameters on the biodiesel yield and its properties, including temperature (40–60 °C), molar ratio methanol to oil (3:1–9:1) and reaction time (30–90 min). The experimental results were fitted to complete quadratic models and optimized by response surface methodology. All the biodiesel samples presented a FAME content higher than 93 wt.% with a maximum, 95.39 wt.%, at 60 °C, 9:1 of methanol to oil ratio and 90 min. On the other hand, a maximum biodiesel yield was found at the same methanol to oil ratio and reaction time conditions but at lower temperature, 40 °C, which reduced the saponification of triglycerides by the alkaline catalyst employed. Adequate values of kinematic viscosity (measured at 30 °C) were obtained, with a minimum of 6.30 mm2/s obtained at 60 °C, 5.15:1 of methanol to oil ratio and 55.52 min. However, the oxidative stability of the biodiesels produced must be further improved by adding antioxidants because low values of IP, below 2.22 h, were obtained. Finally, satisfactory values of completion of melt onset temperature, ranging from 3.31 °C to 3.83 °C, were measured.  相似文献   

18.
Biofuel (e.g. biodiesel) has attracted increasing attention worldwide as blending component or direct replacement for fossil fuel in fuel energized engines. The substitution of petroleum-based diesel with biodiesel has already attained commercial value in many of the developed countries around the world. However, the use of biodiesel has not expanded in developing countries mostly due to the high production cost which is associated with the expensive high-quality virgin oil feedstocks. This research focuses on producing of biodiesel from low cost feedstocks such as used cooking oil (UCO) and animal fat (AF) via alkaline catalyzed transesterification process investigating the effects of process parameters, for example (i) molar ratio of feedstock to methanol (ii) catalyst concentration (iii) reaction temperature and (iv) reaction period on the biodiesel yield. The biodiesel was successfully produced via transesterification process from low cost feedstocks. It was also observed that the process parameters directly influenced the biodiesel yield. The optimum parameters for maximum biodiesel yields were found to be methanol/oil molar ratio of 6:1, catalyst concentration of 1.25 wt% of oil, reaction temperature of 65 °C, reaction period of 2 h and stirring speed of 150 rpm. The maximum biodiesel yields at the optimum conditions were 87.4%, 89% and 88.3% for beef fat, chicken fat and UCO, respectively. The results demonstrate high potential of producing economically viable biodiesel from low cost feedstocks with proper optimization of the process parameters.  相似文献   

19.
Camelina oil is a low-cost feedstock for biodiesel production that has received a great deal of attention in recent years. This paper describes an optimization study on the production of biodiesel from camelina seed oil using alkaline transesterification. The optimization was based on sixteen well-planned orthogonal experiments (OA16 matrix). Four main process conditions in the transesterification reaction for obtaining the maximum biodiesel production yield (i.e. methanol quantity, reaction time, reaction temperature and catalyst concentration) were investigated. It was found that the order of significant factors for biodiesel production is catalyst concentration > reaction time > reaction temperature > methanol to oil ratio. Based on the results of the range analysis and analysis of variance (ANOVA), the maximum biodiesel yield was found at a molar ratio of methanol to oil of 8:1, a reaction time of 70 min, a reaction temperature of 50 °C, and a catalyst concentration of 1 wt.%. The product and FAME yields of biodiesel under optimal conditions reached 95.8% and 98.4%, respectively. The properties of the optimized biodiesel, including density, kinematic viscosity, acid value, etc., were determined and compared with those produced from other oil feedstocks. The optimized biodiesel from camelina oil meets the relevant ASTM D6571 and EN 14214 biodiesel standards and can be used as a qualified fuel for diesel engines.  相似文献   

20.
采用小球藻、甲醇为原料,离子液体组合物作为提取催化剂,微波辅助原位一步法催化制备微藻生物柴油。考察微波功率、离子液体类型、离子液体用量、反应温度、反应时间、醇油物质的量之比等因素对酯交换率的影响,并与传统水浴加热机械搅拌法比较。结果表明:微波和离子液体对生物柴油的制备有协同促进作用,离子液体具有催化、提取与增溶的作用,能较好地消除醇油界面接触,微波的引入可强化传质传热过程,与传统加热方式水浴加热机械搅拌法相比,可缩短酯交换反应的时间,降低反应温度,减少离子液体、甲醇用量。离子液体[BMIM][HCOO]为提取剂,微藻油脂提取率最高;酸性离子液体催化效果明显高于碱性离子液体,离子液体[SO3H-BMIM][HSO4]为催化剂,微藻油脂转化率最高。在甲醇用量和藻粉质量比为6∶1,离子液体组合物和藻粉质量比为5∶1,[BMIM][HCOO]与[SO3H-BMIM][HSO4]体积比12∶1,微波功率400 W,反应温度为60℃,反应时间40 min条件下,生物柴油转化率可达93.3%。该方法将离子液体溶解提取性能、催化性能及微波的热效应相结合,将油脂的提取与油脂的酯化合二为一,能够实现微藻生物柴油的一步转化制备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号