首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Garden nasturtium,Tropaeolum majus (Tropaeolaceae), is an acceptable host plant for the cabbage butterfly,Pieris rapae. Eggs are readily laid on the plant and hatching larvae feed and develop into normal pupae and adults. However, when second- to fifth-instar larvae were transferred from cabbage to nasturtium, they refused to feed and starved to death. Similar results were obtained when larvae were transferred from other host plants to nasturtium. However, larvae that were reared on nasturtium readily accepted cabbage as a new host plant. We have demonstrated the presence of strong antifeedants in nasturtium foliage and identified the most prominent active compound as chlorogenic acid. However, larvae reared on nasturtium had limited sensitivity, and larvae reared on a wheat germ diet were completely insensitive to the antifeedants. Larvae apparently develop sensitivity to the deterrent as a result of feeding on other host plants, whereas continuous exposure to the deterrent causes habituation or suppression of sensitivity development. The results demonstrate that dietary experience can dramatically affect the response of an insect to a potentially antifeedant compound in a plant.  相似文献   

2.
Phaseolus lunatus L. (Henderson Bush lima beans) were exposed to 2 hr acidic fogs with 2.51.0 (v/v) nitrogen-sulfur ratio typical of the west coast of the United States. Fogs with pH values of 2.0 (P < 0.01,t tests), 2.5 (P < 0.05), or 3.0 (P < 0.01) increased percent total nitrogen (dry weight) of foliage as compared to plants subjected to control fogs with a pH of 6.3–6.5. Fresh weight concentrations of soluble protein and certain free amino acid concentrations were increased by plant exposure to acidic fogs with a pH of 2.5 (t tests,P < 0.05). Concentrations of free amino acids considered essential for insect growth, as well as nonessential and total free amino acids were not significantly affected by any treatment (P > 0.05,t test). Water content (%) of foliage was not changed significantly (P > 0.05,t test) by exposure to any of the fogs.Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) larvae ate significantly more foliage and gained significantly more weight on plants treated with 3.0 pH fogs (P < 0.01,t test). Several potential explanations are offered for the lack of significant weight gain by larvae on plants in which soluble protein levels, free amino acid concentrations, or percent total nitrogen contents were enhanced by acidic fogs with a pH of 2.5 and 2.0. No larval feeding preference was detected for foliage exposed to acidic versus control fogs, and no significant differences were detected in percent survival ofT. ni eggs exposed to acidic or control fogs. Some implications of acidic fogs for population dynamics ofT. ni are discussed.  相似文献   

3.
The present study was undertaken to determine the effects of larval feeding experience on subsequent oviposition behavior of the resulting moths. Larvae of the cabbage looper (Trichoplusia ni, Noctuidae) and the diamondback moth (Plutella xylostella, Plutellidae) were exposed to the phenylpropanoid allelochemical trans-anethole (at 100 ppm fw in artificial diet) or the limonoid allelochemical toosendanin (10 ppm sprayed on cabbage leaves). Both compounds had been shown to deter oviposition in naïve moths in previous choice tests. Moths developing from experienced larvae (both sexes) showed a decrease in oviposition deterrence response when given a choice between control and treated leaves, unlike naïve moths. This phenomenon, analogous to habituation to feeding deterrents in lepidopteran larva, occurred irrespective of duration of feeding on the deterrent compound. We also observed that F1larvae resulting from experienced moths (previously exposed to toosendanin as larvae) grew as well on toosendanin-treated foliage as on control foliage. In contrast, growth of F1larvae from naïve moths was significantly impaired by toosendanin. These results demonstrate that host-selection behavior in cabbage looper (a generalist) and diamondback moth (a specialist) may be shaped by feeding experience according to Hopkins' Host Selection Principle in addition to chemical legacy.  相似文献   

4.
Resistance in soybean toHelicoverpa zea is comprised of both constitutive and inducible factors. In this study, we investigated the induction of resistance byH. zea in both greenhouse and field studies. In a greenhouse experiment, fourth-instarH. zea growth rates were reduced by 39% after 24 hr feeding and by 27% after 48 hr when larvae fed on previously wounded V3 foliage (cv. Forrest) compared with undamaged foliage. In a field study, the weight gain by larvae was more than 52% greater when larvae fed for 72 hr on undamaged R2/R3 soybean plants (cv. Braxton) compared to those that fed on previously wounded plants. A significant component of the induced resistance is due to a decline in the nutritional quality of foliar protein following foliar damage byH. zea. Foliar protein was extracted from damaged and undamaged foliage and incorporated into artificial diets. Larval growth was reduced 26% after four days and 49% after seven days on diets containing protein from damaged plants compared to larvae feeding on foliar protein from undamaged plants. Chemical analyses of protein quality also indicated a decline in quality in damaged plants compared to unwounded plants. Increases in lipoxygenase activity (53%), lipid peroxidation products (20%), and trypsin inhibitor content (34%) were observed in protein from wounded plants. Moreover, a 5.9% loss in free amines and 19% loss in total thiols occurred in protein from wounded plants. Larval feeding causes a significant increase in foliar lipoxygenase activity that varied among genotypes. Lipoxygenase isozymes were measured at pH 5.5, pH 7.0, and pH 8.5 in V3 stage plants of Forrest, Hark, D75-1069, and PI 417061 genotypes. Lipoxygenase activity in each genotype was significantly increased after 72 hr of larval feeding at each pH level tested, with the exception of lipoxygenase isozymes at pH 5.5 in genotype PI 417061. Larval feeding on R2/R3 stage plants (field-grown cv. Braxton) for six days also increased foliar lipoxygenase activity.  相似文献   

5.
Trypsin and chymotrypsin inhibitors are proteins that are developmentally regulated in foliage of cabbage plants, appearing at high concentrations in young foliage on mature plants. This temporal and spacial regulation of foliar proteinase inhibitors is synchronized with the appearance and distribution of foliar feeding Lepidoptera. When insects were allowed to select their feeding sites, larvalPieris rapae fed on the young foliage of cabbage plants, while larvalTrichoplusia ni fed on the mature foliage on cabbage plants. LarvalP. rapae that fed on mature plants were significantly smaller than larvae feeding on young plants, while there was no significant difference between larvalT. ni feeding on mature plants and those feeding on young plants. Thus, there was a significant inverse correlation between the level of proteinase inhibitory activity in cabbage foliage and larval growth. WhenP. rapae andT. ni were provided with an artificial diet containing total protein (including significant levels of proteinase inhibitors) that was extracted from cabbage foliage, there was a significant reduction in growth and development of both species of Lepidoptera.  相似文献   

6.
Larvae ofUresiphita reversalis feed almost exclusively on legumes in the tribe Genisteae, which characteristically contain a variety of quinolizidine alkaloids. The larvae are aposematic, and onGenista monspessulana, a major host in California, they feed on the youngest leaves, at the periphery of the plant. These leaves, which were preferred over older foliage in choice tests, contained four to five times the level of alkaloid found in older leaves. The major alkaloids detected in these plants were dehydroaphylline andN-methylcytisine, together accounting for 74% of the total. Preliminary analyses showed the alkaloid profile of exuviae from larvae feeding on these plants was very similar to that of the plants. Two alkaloids, sparteine and cytisine, which are known components of some hosts ofU. reversalis, were phagostimulants for fifth-instar larvae when added to sucrose-impregnated glass-fiber disks. In addition, when sparteine was added to foliage ofG. monspessulana, effectively doubling the percent dry weight of alkaloid, the growth rate of late-instar larvae was positively affected. Cytisine added to plants had no discernible effect on growth of larvae. Alkaloid levels in larvae and in their frass were proportional to levels in the plants on which they fed. Although the majority of alkaloid was excreted, that which was sequestered by the insect was found entirely in the integument, possibly confering some protection from predators.  相似文献   

7.
Greenhouse-grown plants of five tomato lines varying in their level of 2-tridecanone-mediated resistance toManduca sexta (L.) andLeptinotarsa decemlineata (Say) were found to adversely affect larvae ofCampoletis sonorensis (Cameron), a larval endoparasitoid ofHeliothis zea (Boddie), in a manner directly related to their level of resistance. The parasitoid larvae, which emerge as fifth instars from their host and construct a cocoon on the foliage of their hosts' host plant, suffered extensive mortality during cocoon spinning on highly resistant foliage. Mortality was greatest (82%) on the highly resistant plants ofLycopersicon hirsutum f.glabratum (accession PI 134417) and an F1 backcross [(L. esculentum × PI 134417) × PI 134417] selection. Mortality was intermediate (40 and 28%, respectively) on backcross selections with moderate and low levels of resistance and least (8%) on susceptibleL. esculentum. Removal of the glandular trichomes, which contain 2-tridecanone in their tips, from the foliage eliminated differences in parasitoid mortality among plant lines.Bioassays of 2-tridecanone indicated that it is acutely toxic to fifth instarC. sonorensis larvae at the quantities associated with highly resistant foliage and produces symptoms identical to those observed on resistant foliage. 2-Undecanone, a second methyl ketone present in the glandular trichomes of resistant foliage, was also toxic toC. sonorensis larvae, but significantly less so than 2-tridecanone. The results support the hypothesis that 2-tridecanone is responsible for the observed mortality ofC. sonorensis larvae during cocoon construction on resistant foliage.  相似文献   

8.
Tomato pinworms,Keiferia lycopersicella (Walsingham), survived better and developed faster on tomato plants,Lycopersicon esculentum Mill., damaged by ozone than on plants not subjected to ozone fumigation. Other measures of fitness, including survival during pupation, sex ratio of adults, female longevity, and fecundity, were not affected. Analyses of ozonated foliage at zero, two, and seven days following fumigation demonstrated a transient but significant increase (18–24%) in soluble protein concentration. Although the concentration of the total free amino acids in ozonated foliage did not increase significantly, significant changes were observed in at least 10 specific amino acids, some of which are critical for either insect development or the production of plant defensive chemicals. A reduction in total nitrogen in ozonated foliage at seven days postfumigation indicated that nitrogen was being translocated to other portions of the plant. The implications of increases in assimilable forms of nitrogen in ozonated foliage, which lead to improved host-plant suitability for insect herbivores, are discussed both in relation to some current ecological theories and in regard to pest-management strategies.  相似文献   

9.
Rejection of nasturtium,Tropaeolum majus, by cabbage-reared larvae ofPieris rapae has been explained by the presence of feeding deterrents in the nastrutium foliage. Sensitivity to the deterrents develops as neonate larvae feed on cabbage. The most prominent deterrent compound, which is present in nasturtium at a concentration of 40 mg/100 g fresh leaves, was identified as chlorogenic acid. When neonate larvae were fed on a cabbage leaf treated with high concentrations of deterrent-containing extracts of nasturtium foliage, they remained insensitive to the deterrents, so they accepted nasturtium when transferred as second instars. When neonate larvae were reared on a cabbage leaf treated with 0.1 mg chlorogenic acid, ca. 35% of the second instars accepted nasturtium. Similar dietary exposure of neonates to the subunits of chlorogenic acid, caffeic acid and quinic, acid resulted in much less or no effect on the rejection behavior of second instars. The results suggest that the combined effects of specific chemical constituents of nasturtium can explain the rejection of this plant by larvae ofP. rapae, but if larvae are continuously exposed to these compounds immediately after hatching, they apparently become habituated to the feeding deterrents. The lack of activity of the subunits of chlorogenic acid suggests that specific structural features are necessary for a dietary constituent to cause such habituation or suppression of sensitivity development.  相似文献   

10.
Tomato (Solanum lycopersicum) polyphenol oxidases (PPOs), enzymes that oxidize phenolics to quinones, have been implicated in plant resistance to insects. The role of PPO in resistance to cotton bollworm [Helicoverpa armigera (Hübner)] and beet armyworm [Spodoptera exigua (Hübner)] (Lepidoptera: Noctuidae) was evaluated. Consumption, weight gains, and mortality of larvae feeding on foliage of transgenic tomato lines overexpressing PPO (OP lines) and of larvae feeding on foliage of transgenic tomato lines with suppressed PPO (SP lines) were compared with consumption, weight gains, and mortality of larvae feeding on non-transformed (NT) plants. Increases in foliage consumption and weight gains were observed for cotton bollworms feeding on leaves of SP plants compared to NT and OP plants. PPO activity was negatively correlated with both weight gains and foliar consumption of cotton bollworm, substantiating the defensive role of PPO against this insect. Similarly, beet armyworm consumed less foliage (both young and old leaves) from OP plants than SP plants. Larvae feeding on OP leaves generally exhibited lower weight gains than those feeding on SP leaves. These results indicate that tomato PPO plays a role in resistance to both cotton bollworm and beet armyworm.  相似文献   

11.
The cuticular lipid composition of lower and upper leaves of five genotypes of field-grown corn,Zea mays L., was determined by combined gas chromatography-mass spectrometry. Surface lipids of the upper leaves had a higher proportion ofn-alkanes (45–52%) than the lower leaves, while the lower leaves had higher percentages of fatty alcohols (12–18%) than the upper leaves. Scanning electron microscopy showed that the upper leaves of two corn genotypes, MpSWCB-4 and Cacahuacintle X's, had a smooth amorphous appearance, while the lower leaves had a dense array of wax crystals.Spodoptera frugiperda (J.E. Smith) larvae weighed more and developed more rapidly when they were reared on diet containing corn foliage from which the cuticular lipids had been removed than when they were fed untreated foliage. However, growth was not inhibited when larvae were fed diet containing the cuticular lipid extracts or individual cuticular lipid components.  相似文献   

12.
Unmated female or male cabbage looper moths,Trichoplusia ni (Hübner), were attracted more often in a flight tunnel to a cage with moths of the opposite sex and a bouquet of cotton foliage. Increased sexual attractiveness of females with plants may be a result of stimulation of pheromone release in response to plant odor, since more males were attracted when odor of cotton foliage was passed over females than when odor of females was passed over cotton foliage before venting into the flight tunnel. Increased sexual attractiveness of males with plants is due in part to host odor enhancement of female attraction to male pheromone, since more females were attracted to synthetic male pheromone (a blend of enantiomers of linalool and isomers of cresol) and a cotton leaf extract than were attracted to male pheromone alone. A short synthesis procedure was developed for (S)-(+)-linalool, the major component of the male sex pheromone, isolated from hair pencils, used in these tests.  相似文献   

13.
First instarManduca sexta (L.) larvae confined on foliage fromLycopersicon hirsutum f.glabratum (accession PI 134417) plants grown under a long-day regime exhibited greater mortality than larvae on foliage from plants grown under a short-day regime. 2-Tridecanone, a toxin important in the insect resistance of PI 134417, was significantly more abundant in the foliage of plants grown under the long-than the short-day regimes. Light intensity influenced neither 2-tridecanone levels nor the expression of resistance. The density of glandular trichomes, which secrete 2-tridecanone, was influenced by an interaction between day length and light intensity.Lepidoptera: Sphingidae.Paper no. 6503 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27650.  相似文献   

14.
Field populations ofHeliothis spp. were sampled for levels of naturally occurring larval parasitism on six tomato lines varying in levels of 2-tridecanone-mediated resistance toManduca sexta (L.) andLeptinotarsa decemlineata (Say). Second and third instars were parasitized byCampoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) andCotesia (=Apantales)marginiventris (Cresson) (Hymenoptera: Braconidae) in 1984 through 1986 and byMicropletis croceipes (Cresson) (Hymenoptera: Braconidae) in 1986. Differences in parasitism by individual and multiple species among host plants were not demonstrated. However, levels of parasitism were low and variable among replicates. Total larval parasitism averaged across all plant lines was less than 6% in 1984 and 1986 and approximately 11% in 1985. In laboratory cage studies,C. sonorensis parasitized fewerH. zea larvae on tomato foliage with high levels of 2-tridecanone than on foliage with low levels. RearingH. zea on diet containing 2-tridecanone and 2-undecanone did not alter incidence of parasitism byC, sonorensis; nor did rearing parasitizedH. zea larvae on chemically treated host diets precondition the parasitoid to higher or lower mortality when transferred to foliage as a substrate for cocoon spinning, regardless of the foliage genotype. However, parasitoid survival during cocoon spinning on foliage varied significantly among plant lines in a manner corresponding to the level of 2-tridecanone-mediated resistance of the foliage. Parasitoid mortality was greatest on highly resistant foliage and lowest on susceptible foliage.  相似文献   

15.
We tested the hypothesis that ontogenetic variation in leaf chemistry could affect the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin, and thus provide spatial variation in (1) foliage protection and (2) selective pressures that could delay the resistance of folivores. Our model consisted of clonal hybrid Populus plants (NC5339). Consumption of foliage and relative growth rates of gypsy moth, Lymantria dispar (L.) increased, and phenolic glycoside concentrations decreased, as leaves from transformed plants containing the cry1A(a) d-endotoxin and nontransformed plants matured from leaf plastochron index (LPI) 1–6. Feeding and growth rates were negatively correlated with phenolic glycosides in both transformed and nontransformed foliage. The presence of the B. thuringiensis d-endotoxin was at most, additive to the effect of the phenolic glycosides. Feeding and growth rates were positively correlated with condensed tannins in transformed foliage, but there was no relationship with condensed tannins in nontransformed foliage. The results indicate that the presence of foliar allelochemicals of poplar can enhance the effectiveness of genetically expressed B. thuringiensis d-endotoxin against gypsy moth larvae. However, the spatial variation in gypsy moth performance in response to the combination of foliar allelochemicals and d-endotoxin was not greater than the effect of ontogenetic variation in foliar allelochemicals alone. These results suggest that for this important pest, foliage protection may be obtained without genetically engineered defenses, and instead, by relying on ontogenetic and clonal variation in allelochemicals. The benefits of combining novel resistance mechanisms with natural ones will depend upon the specific folivore's adaptation to natural resistance mechanisms, such as allelochemicals. Moreover, some of the greatest benefits from transgenic resistance may arise from the need to protect trees from multiple pests, some of which may not be deterred by, or may even prefer, allelochemicals that confer protection from a few species.  相似文献   

16.
We examined genetic variation in inducibility and in constitutive and herbivore-induced levels of glucosinolates, trypsin inhibitors, and resistance to herbivory in families of Brassica rapa originating from a wild population. We also examined phenotypic and genetic correlations among absolute levels of these traits in control and induced plants. We grew seedlings of 10 half-sib families in pairs in pots, and exposed one plant per pair to folivory by Trichoplusia ni larvae. Two days later, we sampled all plants for total glucosinolate and trypsin inhibitor levels and examined the preference and consumption by T. ni larvae of previously damaged (induced) and undamaged (control) plants. There was no significant variation among sire families in the induction of glucosinolates or trypsin inhibitors by T. ni feeding. Total glucosinolate levels in either control or induced plants did not vary by family. In contrast, trypsin inhibitor levels in both control and induced plants varied significantly by family. Trichoplusia ni fed less on induced plants than on control plants in the bioassay, but neither the induction of resistance by prior T. ni feeding nor absolute levels of damage done to control and induced plants varied significantly by sire family. Temporal blocking strongly affected trypsin inhibitor levels and the response of some families in the bioassays. There were no significant phenotypic or genetic correlations of levels of glucosinolates or trypsin inhibitors with each other or with damage in either control or induced plants. Overall, these results suggest that in the B. rapa population that we studied, both total glucosinolate content and biological resistance to herbivory by T. ni was nonvariable and almost universally inducible by prior T. ni feeding. In contrast, control and induced levels of trypsin inhibitors varied genetically and have the capacity to respond to future selection imposed by herbivores. However, the role of these defenses in constitutive or induced resistance to T. ni in this species remains unclear.  相似文献   

17.
The beet armyworm, Spodoptera exigua (Hübner), has been anecdotally reported to oviposit more on drought stressed than on nonstressed cotton plants. Using potted cotton plants in cages, this study demonstrated that beet armyworms deposited 3.3, 4.6, and 2.3 times more (P 0.05) eggs on cotton plants that were grown on 1500, 1000, and 750 ml water/wk, respectively, than on cotton plants grown in well watered (4000 ml water/wk) soil. Third instars, however, showed no preference for stressed cotton foliage over nonstressed foliage. Third instar beet armyworms raised on well watered cotton plants were 1.5, 2.3, and 2.6 times heavier than those reared on cotton grown in the 1500, 1000, and 750 ml water/wk plants (P 0.05), respectively. Physiochemical analyses showed that drought stressed leaves had significantly greater accumulations of free amino acids that are essential for insect growth and development. Soluble protein and soluble carbohydrates were also more abundant in stressed leaves compared to nonstressed leaves. Despite the apparent increase in nutritional quality in drought stressed plants, larval survival was reduced, probably because the limiting factor became water. Greater amounts of cotton leaf area were consumed from drought stressed leaves (P 0.05) than from nonstressed leaves, probably because the larvae had to metabolize greater portions of assimilated energy to supplement body water with metabolic water derived from respiration. The association of greater host plant nutritional quality to oviposition preference, and conversely, to reduced survivorship, is discussed.  相似文献   

18.
The foliage and fruit of the tomato plantLycopersicon esculentum contains polyphenol oxidases (PPO) and peroxidases (POD) that are compartmentally separated from orthodihydroxyphenolic substrates in situ. However, when leaf tissue is damaged by insect feeding, the enzyme and phenolic substrates come in contact, resulting in the rapid oxidation of phenolics to orthoquinones. When the tomato fruitwormHeliothis zea or the beet army-wormSpodoptera exigua feed on tomato foliage, a substantial amount of the ingested chlorogenic acid is oxidized to chlorogenoquinone by PPO in the insect gut. Additionally, the digestive enzymes of the fruitworm have the potential to further activate foliar oxidase activity in the gut. Chlorogenoquinone is a highly reactive electrophilic molecule that readily binds cova-lently to nucleophilic groups of amino acids and proteins. In particular, the —SH and —NH2 groups of amino acids are susceptible to binding or alkylation. In experiments with tomato foliage, the relative growth rate of the fruitworm was negatively correlated with PPO activity. As the tomato plant matures, foliar PPO activity may increase nearly 10-fold while the growth rate of the fruitworm is severely depressed. In tomato fruit, the levels of PPO are highest in small immature fruit but are essentially negligible in mature fruit. The growth rate of larvae on fruit was also negatively correlated with PPO activity, with the fastest larval growth rate occurring when larvae fed on mature fruit. The reduction in larval growth is proposed to result from the alkylation of amino acids/protein byo-quinones, and the subsequent reduction in the nutritive quality of foliage. This alkylation reduces the digestibility of dietary protein and the bioavailability of amino acids. We believe that this mechanism of digestibility reduction may be extrapolatable to other plant-insect systems because of the ubiquitous cooccurrence of PPO and phenolic substrates among vascular plant species.  相似文献   

19.
We investigated the effects of host species and resource (carbon dioxide, nitrate) availability on activity of detoxication enzymes in the gypsy moth,Lymantria dispar. Larvae were fed foliage from quaking aspen or sugar maple grown under ambient or elevated atmospheric CO2, with low or high soil NO 3 availability. Enzyme solutions were prepared from larval midguts and assayed for activity of cytochrome P-450 monooxygenase, esterase, glutathione transferase, and carbonyl reductase enzymes. Activity of each enzyme system was influenced by larval host species, CO2 or NO 3 availability, or an interaction of factors. Activity of all but glutathione transferases was highest in larvae reared on aspen. Elevated atmospheric CO2 promoted all but transferase activity in larvae reared on aspen, but had little if any impact on enzyme activities of larvae reared on maple. High NO 3 availability enhanced activity of most enzyme systems in gypsy moths fed high CO2 foliage, but the effect was less consistent for insects fed ambient CO2 foliage. This research shows that gypsy moths respond biochemically not only to interspecific differences in host chemistry, but also to resource-mediated, intraspecific changes in host chemistry. Such responses are likely to be important for the dynamics of plantinsect interactions as they occur now and as they will be altered by global atmospheric changes in the future.  相似文献   

20.
Container grownEncelia farinosa were exposed to three 3-hr episodes of acidic fog (pH 2.5) typical of events in southern California. Adults and larvae of the specialist leaf-feeding herbivore,Trirhabda geminata, preferred to feed on the acidic-treated foliage compared to control fogged (pH 6.3–6.5) foliage. Previous feeding damage on the plants did not affect feeding preference. The acidic-fogged foliage was significantly higher in total nitrogen and soluble protein but not different from control-treated tissue in water content. Stress on native populations of this drought-deciduous shrub caused by atmospheric pollutants may also result in altered feeding ecology of the beetle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号