首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
闫海鸥  吴星 《绝缘材料》2021,54(12):52-57
为加快绝缘子表面电荷消散,提升绝缘子沿面闪络电压,本研究提出了等离子体氟化改性技术,选用与绝缘子配方一致的环氧树脂试样,改变材料表面的处理时间,测试处理前、后试样的表面物理、化学及介电特性.结果表明:等离子体处理作为一种兼具表面物理改性及化学改性的方法,可以在试样表面引入亲水性基团,改变试样表面的浸润性,试样表面粗糙度随处理时间的增加呈先提高后降低的趋势,同时等离子处理可以在材料表面引入F元素,浅化表面陷阱,提升材料的表面电导率,减少表面电荷积聚;在选定参数下,处理9 min后,沿面闪络电压提升至最大值,威布尔分布计算表明提升了约37.17%;过长时间的等离子体表面处理会破坏材料结构,深化表面陷阱,降低表面电导率,降低沿面闪络电压.  相似文献   

2.
等离子体对环氧树脂材料的表面改性在未来高压输电设备制造有着广泛的应用前景,基于此,采用次大气压辉光放电等离子体处理环氧树脂材料,通过表面电荷测量系统测量表面电位值、表面(体)电导率、闪络电压等手段分析改性表面电荷动态特性。实验结果表明:等离子体对环氧树脂材料的改性处理能有效加快其表面电荷的消散;改性处理后的材料表面电位衰减加快、沿面闪络电压升高;从陷阱能级分布曲线可知,陷阱能级变浅,密度变大,且随着改性时间增长,浅能级深度陷阱密度减小。此外,处理后材料的表面电导率升高一个数量级,体电导率无明显变化。分析表明:一方面浅陷阱能级不利于电荷被材料表面的陷阱所捕获,但有利于被捕获电荷的脱陷;另一方面,材料表面电导率的升高加快了表面电荷沿面迁移的速率。在这两方面的共同作用下,处理后环氧树脂材料表面电荷消散加快,绝缘性能提高。  相似文献   

3.
大容量气体绝缘管道输电(GIL)运行过程中产生的温升问题会加速环氧树脂绝缘子老化,温度梯度下绝缘子表面电荷行为也与沿面闪络密切相关。为解决上述问题,制备了环氧树脂/氮化硼(EP/BN)高导热复合材料,研究其在加热至60oC再散热不同时间下针板电晕后的表面电荷动态特性。结果表明:在相同温度下,试样表面电荷消散速度随着BN含量的增加而先减慢后加快,起始表面电荷密度先升高后降低;对于同一种试样,随着散热时间的增加,表面电荷消散速度变慢,起始表面电荷密度升高,且通过陷阱能级分布特性发现,试样的深、浅陷阱能级均变低,深陷阱密度增大,浅陷阱密度减小,且BN掺杂含量越高,该分布特性越明显。  相似文献   

4.
随着高压直流输电迅猛发展,绝缘材料在直流电压下表面电荷积聚现象严重威胁直流输电系统的安全可靠运行。为加快绝缘材料表面电荷的消散,采用大气压等离子体射流,以TEOS为前驱物,在环氧树脂表面沉积SiO_x薄膜。对改性前后材料表面化学组成、表面电导率、表面电荷特性、表面陷阱分布以及耐压特性进行多参数测量,研究等离子体射流改性前后环氧树脂表面特性。实验结果表明:等离子体处理在环氧树脂表面引入大量以Si-O-Si及Si-OH基团为主的无机基团,且表面电导率提高2个数量级。随着改性时间的延长,表面电荷的初始积聚量减少,消散速度加快,陷阱能级深度变浅;沿面闪络电压呈现先增后降的趋势,在改性180s时闪络电压提高到最高值9.0k V。研究结果表明:通过大气压等离子体射流在聚合物表面沉积薄膜能够提高环氧树脂绝缘性能,为其工程应用提供了有效的改性方法。  相似文献   

5.
分别采用放电等离子体、离子注入、表面直接氟化的方法对环氧复合绝缘样品进行处理。研究不同处理方法对绝缘材料表面状况及高气压c-C_4F_8/N_2混合气体中的负直流高压下闪络特性的影响。实验结果显示等离子体和离子注入方法对绝缘样品表面改性无法提高样品在高气压c-C_4F_8/N_2混合气体中的沿面闪络电压,并且放电会直接破坏表面结构,导致绝缘失效;采用表面直接氟化处理的环氧绝缘样品,闪络电压有所提高。测量表明,表面氟化引起环氧复合绝缘材料表面电位降低,电位衰减加快,表面陷阱能级下降,陷阱密度随氟化时间加长而增加。通过研究认为,目前放电等离子体和离子注入方法处理绝缘材料表面,在技术上还需要完善。表面直接氟化处理环氧材料表面可以提高其在高气压下闪络特性,但是耐受放电次数的减少将制约它的应用。  相似文献   

6.
环氧树脂材料在电场作用下会出现表面电荷积聚现象导致沿面放电。为改善环氧树脂材料的直流绝缘性能,文中对环氧树脂试品表面进行局部粗糙度处理,开展闪络实验,探究局部粗糙度处理在空气、C_(4)F_(7)N/CO_(2)混合气体和SF_(6)3种气体环境中对环氧树脂试样闪络特性的影响。建立二维仿真模型,通过有限元法分析局部粗糙度处理后环氧树脂材料的表面电荷特性以及陷阱分布。根据闪络实验结果,粗糙面位置不同的环氧树脂试品的沿面闪络电压在3种气体中均随表面粗糙度的增加呈现先上升后下降的趋势,并在粗糙面位于中心且表面粗糙度为1.3μm时达到最大值。仿真结果显示,对于指型电极,环氧树脂材料表面积聚双极性表面电荷,当粗糙面位于试品中心时空穴陷阱和电荷陷阱的密度较小。因此可认为对环氧树脂的局部粗糙度处理能够改变其沿面闪络特性与表面电荷特性,通过合理选择粗糙面的位置以及粗糙度的数值可改善环氧树脂的直流绝缘性能。  相似文献   

7.
直流电场下的绝缘材料表面电荷积聚现象对电气设备的安全运行造成威胁。为了加快环氧树脂(ER)表面电荷的消散,文中采用纳秒脉冲电源激励的大气压等离子体射流(APPJ)阵列,对环氧树脂表面进行扫描处理,沉积SiO_x薄膜,之后利用傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、高阻计、表面电位测试系统等装置对改性前后的样品表面理化特性进行表征分析。实验结果表明:射流阵列扫描沉积在环氧树脂表面引入了Si—O—Si、Si—OH和OH等基团,并且形成的薄膜使材料表面粗糙度降低。改性后的环氧树脂表面电导率提升2~3个数量级,使表面电荷初始积聚量减少,消散速度加快,陷阱能级的深度与密度均有所降低,闪络电压由未处理时的-6.5 kV提升至扫描沉积4次时的-9.3 kV。相对于单管射流改性,射流阵列可产生更大面积的低温等离子体,具有更高的处理效率和实用性。  相似文献   

8.
环氧树脂绝缘表面积聚的大量电荷是导致表面闪络的重要因素。在环氧树脂中掺杂TiO2无机纳米颗粒之后,可以增强其力学性能和抗电痕破坏性能,但对其表面电荷动态过程研究较少。同时,表层氟化可以保持原有有机聚合物的优良性能之外,还可使聚合物的本证缺陷得到改善。为此,制备了纯环氧试样以及含纳米TiO2质量分数分别为2%、4%、6%、8%的纳米复合试样,并对试样进行不同时间(0、30、60、90、120 min)的氟化处理,研究其在直流电场下纳米TiO2质量分数与氟化时间对表面电荷的积累与消散特性的综合影响。研究表明:纳米TiO2颗粒会减缓环氧树脂表面电荷消散的速度,6%纳米复合试样电荷消散最慢;表层氟化处理可以加速电荷消散速度,所以可以通过表层氟化处理来弥补纳米颗粒加入后对环氧树脂绝缘性能所带来的不利影响。  相似文献   

9.
氮化硼/环氧树脂复合材料因其优异的导热、机械、电学性能成为高压电气设备中重要的功能材料。为此提出对填料进行氟化剥离处理以提升复合材料的绝缘性能。通过制备含改性氮化硼质量分数分别为1%、2%、4%、8%的环氧树脂复合材料,与未处理填料的氮化硼/环氧树脂复合材料进行对比,研究其在直流电场下表面电荷消散与闪络电压的特性。采用SEM、FTIR、AFM、EDS等手段研究填料改性前后的性质和材料表面闪络处的形貌和元素成分。结果显示:材料表面电荷的消散速度及闪络电压随填料质量分数的增加而提升;对氮化硼填料氟化剥离处理有助于促进复合材料的电荷消散,提高闪络电压。从电荷消散途径、氮化硼禁带宽度、材料表面陷阱效应方面对实验现象进行了解释,为复合材料的无机填料处理提供了一种新的改性方法。  相似文献   

10.
环氧树脂(EP)常用作高频变压器的主绝缘材料,因长期受高频重复电应力作用,导致表面积累的电荷密度增加,容易诱发绝缘失效。纳米改性是提升复合绝缘界面电荷消散特性的重要手段。该文采用多巴胺接枝的纳米氮化硼(h-BN)改性制备了环氧树脂复合材料,重点考察绝缘表面电荷的高频消散特性。受耗散时间、高频致热效应及深陷阱能级的影响,高频下的绝缘表面电荷不易消散,而引入多巴胺接枝的BN可有效提升环氧树脂复合绝缘的电荷消散速率。具体结果表明,掺杂质量分数为10%时,电荷消散速率达到最大值62.15%,相较于纯EP提高了19.41%,与此同时高频沿面闪络电压比纯EP提高了14.73%。其提升机理主要缘于两个方面:一是BN表面接枝的氨基增强了填料与基体的相容性,形成的三维交联网络拓宽了电荷消散路径;二是材料表层浅陷阱密度的提高,使得载流子易通过隧穿效应参与到电导过程,提高了载流子迁移率;此二者协同作用有效提高了表面电荷的高频消散速率。上述研究结果为高频变压器主绝缘系统优化设计提供了基础依据。  相似文献   

11.
环氧树脂绝缘子在电场的作用下会发生表面电荷积聚,严重时会发生沿面闪络现象,威胁电力系统和电气设备的安全运行。为此利用CF4/Ar等离子体对纳米SiC进行氟化处理,以改变其在环氧树脂中的界面特性,将含有不同质量分数氟化纳米SiC的环氧复合涂层材料以3种不同厚度涂覆在环氧树脂基体上,对其进行表面电位测试和直流闪络测试。实验结果表明:随着填料在环氧涂层中含量的增加,试样的闪络电压增高,电荷消散速度加快,陷阱能级和密度降低。增加涂层厚度同样可以提高试样的闪络电压,等离子体氟化纳米SiC质量分数为5%的涂层厚度为600μm时,闪络电压较无涂层试样提高了18.7%。涂覆等离子氟化纳米SiC/环氧复合涂层作为便捷有效的方法,在减少电气设备运行故障方面具有广阔的应用前景。  相似文献   

12.
在高压直流电场下环氧树脂表面的微粒和缺陷会使局部电场发生畸变,形成非均匀电场,进而诱发沿面闪络。现有环氧树脂表面改性方案大多关注于处理的均匀程度,对非均匀电场下的耐压性能提升有限。本文针对非均匀电场开展仿真研究,结合电场特点进行针对性的梯度改性方案设计,将等离子体氟化改性技术与梯度绝缘理念相结合,在传统氟化改性的基础上实现了对环氧树脂的等离子体阶跃型梯度氟化改性。结果表明:等离子体阶跃型梯度氟化使环氧树脂的表面微观形貌、化学组分和电气性能均呈现出阶跃型梯度分布,既可以降低环氧树脂的表面场强最大值,又可以调控界面电荷动态行为,大幅提升环氧树脂的沿面闪络性能,提升效果优于等离子体均匀氟化。  相似文献   

13.
环氧树脂(epoxy resin,EP)的氟化纳米改性是提升复合绝缘材料沿面耐压性能的重要手段。该文对石墨烯纳米片(graphene nanoplatelets,GNPs)分别进行等离子体氟化、化学氟化与等离子体–化学协同氟化3种不同形式的改性处理,探究不同氟化方式对含氟界面层的影响,并揭示其对EP复合材料直流沿面耐压性能的提升机理。结果表明:3种氟化石墨烯纳米片均对EP复合材料沿面闪络电压有提升效果。进一步对EP复合材料表面电荷消散情况及陷阱分布特性进行分析,发现不同接枝形式的GNPs对EP复合材料沿面耐压性能的提升机制存在差异。填料GNPs与EP基体间有效键合作用的形成,可以促进电荷沿GNPs的输运,从而影响EP复合材料的沿面耐压性能。  相似文献   

14.
聚酰亚胺(Polyimide,PI)纳米复合薄膜以其优越的绝缘性能广泛应用于变频牵引电机匝间绝缘。为研究纳米粒子表面改性对复合薄膜陷阱特性以及绝缘特性的影响,利用大气压空气等离子体对纳米粒子表面进行改性,采用原位聚合法制备聚酰亚胺纳米复合薄膜,通过去极化热刺激电流(thermally stimulated depolarization current,TSDC)分析薄膜内陷阱能级密度分布,利用电声脉冲法(pulsed electro acoustic method,PEA)得到了薄膜的空间电荷分布情况,并测试得到方波脉冲下复合薄膜的绝缘寿命。研究结果表明,纳米粒子经过等离子体改性后,聚酰亚胺纳米复合薄膜陷阱能级峰位移向低能级,浅陷阱密度由7.15×10~(19)(1/m~3)增至9.99×10~(19)(1/m~3),而深陷阱密度由7.63×10~(19)(1/m~3)降至5.33×10~(19)(1/m~3),浅陷阱密度的增加有效抑制了薄膜内空间电荷的积累,空间电荷密度最大值由6.93C/m~3降至3.59C/m~3,同时聚酰亚胺复合薄膜的绝缘寿命提高了28.06%;讨论分析了纳米粒子表面改性对聚酰亚胺复合薄膜内陷阱分布影响,并揭示了陷阱特性对薄膜空间电荷分布以及绝缘寿命的影响机理。  相似文献   

15.
气体绝缘设备中的环氧树脂材料在直流高压下易积聚表面电荷,引发沿面闪络事故。为了抑制环氧树脂材料表面电荷的积聚,采用交流电源激励的滑动放电产生低温等离子体,并以正硅酸乙酯(TEOS)为反应前驱物在环氧树脂表面沉积类SiO_2薄膜,同时利用Fourier变换红外光谱仪(FTIR)、高阻表和表面电位测试系统等对沉积薄膜表面进行分析。实验结果表明:沉积时间超过5 s时,环氧树脂表面形成一层以Si—O—Si及Si—OH基团为主要组成的薄膜,其厚度可达219 nm;且水接触角显著降低,表面电导率及体积电导率可提升2个数量级,相对介电常数明显降低。表面电位3维分布图结果表明,沉积处理后环氧树脂的表面电荷初始积聚减少,且消散速度加快。这是因为环氧树脂表面沉积类SiO_2薄膜后使材料表面陷阱能级变浅,从而抑制了表面电荷的积聚。  相似文献   

16.
陷阱参数可影响交联聚乙烯(cross-linked polyethylene,XLPE)电缆绝缘中载流子的注入和迁移过程,进而对XLPE电缆绝缘的介电性能产生影响。针对商用110kV的高压配电电缆绝缘,通过等温表面电位衰减(isothermal surface potential decay,ISPD)测试系统研究不同温度热老化过程对XLPE电缆绝缘表面陷阱参数的影响。实验结果表明,未老化的XLPE电缆绝缘表面以电子深陷阱和空穴深陷阱为主,当老化温度低于XLPE的熔融温度(T_m)时,浅陷阱密度增加,深陷阱密度变化幅度不大,XLPE电缆绝缘表面仍以深陷阱为主。而当老化温度高于Tm时,电子、空穴浅陷阱密度大幅增加,深陷阱密度大幅下降,陷阱能级下降,老化临界时间之后,XLPE试样表面以电子浅陷阱和空穴浅陷阱为主。热老化试样中浅陷阱密度的增加可能来源于羰基(C=O)等老化副产物的增加,深陷阱密度的下降可能是来源于老化过程对球晶的破坏。不同老化温度条件下表面陷阱密度和能级变化规律的差异可能是由晶体结构劣化方式的差异造成。  相似文献   

17.
气体绝缘管道输电和气体绝缘组合电器运行过程中盆式绝缘子表面电荷的积累与消散特性对其绝缘破坏具有重要影响,通过纳米颗粒调控环氧树脂表面电荷的动态行为及其闪络特性对提高其安全运行具有重要意义。制备了质量分数为0%、2%、4%、6%和8%的环氧树脂/SiO_2纳米复合材料,获得了其在正、负直流电压作用下表面电位衰减特性、陷阱分布特性及其闪络击穿特性,并建立了基于陷阱调控的闪络击穿失效物理模型。结果表明:正、负电晕充电条件下,SiO_2纳米颗粒均导致环氧树脂表面电位衰减速度减小,纳米质量分数为4%时达到最小值; SiO_2纳米颗粒引入了新的空穴陷阱和电子陷阱,深陷阱能级和陷阱密度均增加,纳米质量分数为4%时达到最大值; SiO_2纳米颗粒提高了环氧树脂的闪络电压,质量分数为4%的纳米复合材料与纯环氧树脂相比,正、负直流电压下闪络电压分别提升了58. 04%和64. 15%。  相似文献   

18.
环氧树脂绝缘材料在核电站、宇宙航天等核辐射环境下的电气电子设备中广泛应用,了解高能辐射对其表面陷阱分布的影响对保障绝缘安全具有重要意义。本文以经伽玛线辐射的环氧树脂为试样,通过直流电晕向其表面注入电荷,采用静电电位计测量表面电位衰减特性,基于等温衰减电流理论计算材料表面陷阱分布,分析总辐射量的影响。结果表明,表面陷阱存在双能级中心;随着总辐射量的增大,陷阱密度先减小后增大,陷阱能级变浅。伽玛线辐射引发的化学反应使试样表层化学结构发生变化,是导致陷阱分布改变的主要原因。  相似文献   

19.
在真空环境下采用电子束辐照对环氧微米复合介质试样进行表面处理,测试辐照前后试样的表面电位衰减和表面电导等特性。结果表明:辐照前后的试样均存在深、浅两个表面陷阱中心。随着辐照能量的增大,表面浅陷阱密度逐渐减小,其能级未发生明显变化,表面深陷阱的密度和能级均逐渐增大;电子束辐照在介质中沉积的能量与表面陷阱特性的变化有关,当电子束沉积的能量大于电介质禁带宽度的3倍左右,就会造成电介质电离,导致电介质表面深陷阱能级和密度增加,阻碍载流子在试样表面的迁移,降低了试样的表面电导率。采用电子束辐照调控绝缘介质的表面陷阱特性和表面电导,提高沿面闪络电压,能够为电力设备的可靠运行提供保障。  相似文献   

20.
气体绝缘金属封闭输电线路在长期运行过程中,其环氧树脂绝缘子表面电荷积聚导致气固界面电场畸变,严重威胁系统安全稳定运行。表面氟化处理是聚合物绝缘材料表层分子调控的重要手段之一,以其工艺简单、技术成熟和成本低廉等优势为绝缘子表面改性提供了可行的思路。为此主要基于国内外研究成果,从调控介电参数、抑制表面电荷以及提升闪络电压3个方面,分析表面氟化改性的作用机理,综述了氟化处理用于环氧树脂绝缘子表面改性的研究进展,多篇文献结果显示环氧树脂复合材料经过氟化处理后电气性能得到明显提升。最后,提出了研究中存在的问题及氟化技术的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号