首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过添加亚硝酸钠或硝酸镥作为单一促进剂或两者复配制备复合促进剂对常温锌-锰系磷化液加以改进,并使用改进的磷化液在不同温度下进行实验.比较了使用单一或复合促进剂获得的磷化膜的形貌质量和耐蚀性,同时研究了温度对使用复合促进剂获得的磷化膜的形貌质量和耐蚀性的影响.结果表明:使用复合促进剂(亚硝酸钠1.5 g/L+硝酸镥0.04 g/L)获得的磷化膜耐蚀性明显好于使用亚硝酸钠(1.5 g/L)或硝酸镥(0.04 g/L)作为促进剂获得的磷化膜,其主要原因是复合促进剂能更好地促进磷化成膜,获得了比较致密、平整度较好的磷化膜.温度对使用复合促进剂获得的磷化膜的形貌质量和耐蚀性有较大影响,随着温度从15℃升高到30℃,磷化膜的致密度明显改善,表面粗糙度从0.36μm下降到0.28μm,其耐蚀性逐步提高.采用改进的常温锌-锰系磷化液在合适温度下可以获得耐蚀性较好的常温磷化膜,该磷化膜可以作为电气柜用冷轧板的涂装底层.  相似文献   

2.
选取钢结构连接使用的异形螺栓作为研究对象进行锰系磷化,研究了磷化液中硝酸锰质量浓度、磷酸二氢锰质量浓度以及温度、磷化时间对锰系磷化膜的宏观形貌及耐硫酸铜点滴时间的影响。结果表明:随着硝酸锰质量浓度和磷酸二氢锰质量浓度增加、温度升高及磷化时间延长,锰系磷化膜表面由较粗糙疏松趋于平整致密,然后再变为较粗糙疏松,色泽随之变化,耐硫酸铜点滴时间呈现先延长后缩短的趋势。最佳的硝酸锰浓度为20 g/L、磷酸二氢锰浓度为45 g/L、温度为90℃、磷化时间为20 min,由此获得的锰系磷化膜呈纯黑色,表面平整致密,晶粒之间衔接紧密,主要含有Mn、P和O三种元素,其耐硫酸铜点滴时间达448 s。在相同的中性盐雾实验条件下,未磷化螺栓发生了严重的全面腐蚀,而锰系磷化后螺栓的腐蚀程度较轻,耐蚀性显著提高。  相似文献   

3.
将纳米SiO2颗粒添加到磷化液中,在建筑结构钢表面制备出锌系复合磷化膜,并与纯锌系磷化膜进行了比对.结果表明:两种磷化膜都完全覆盖了基体,且都呈断层状形貌,锌系复合磷化膜的晶粒空隙被纳米SiO2颗粒填补,其含量约为7.54%.两种磷化膜的耐蚀性都好于建筑结构钢,且锌系复合磷化膜的耐蚀性最好.纳米SiO2颗粒在一定程度上填补了晶粒空隙,有效阻碍了腐蚀介质通过晶粒空隙渗透和扩散,从而保证锌系复合磷化膜具有较好的耐蚀性,使建筑钢构件能更好的满足防腐蚀要求.  相似文献   

4.
在Q345钢表面制备了锌-钙系磷化膜,以期获得防锈和装饰双重效果。分别研究了磷化时间和磷化温度对锌-钙系磷化膜耐蚀性的影响。结果表明:锌-钙系磷化膜能一定程度上提高Q345钢的耐蚀性。磷化时间为5 min时制备的锌-钙系磷化膜对Q345钢的保护作用最弱。随着磷化时间从5 min延长至30 min,锌-钙系磷化膜对Q345钢的保护作用先增强后减弱。随着磷化温度从55℃升高至70℃,锌-钙系磷化膜的耐蚀性同样是先增强后减弱。  相似文献   

5.
使用以硅酸钠为主成分的封闭液对工程车用件表面的锌钙系磷化膜进行封闭处理.选取封闭液中硅酸钠的浓度、封闭时间和封闭液温度作为影响因素,并以电荷转移电阻和耐硫酸铜腐蚀时间作为评价指标,通过单因素实验考察了封闭处理工艺条件对封闭处理后的磷化膜耐蚀性的影响.结果表明:硅酸钠的浓度和封闭时间对封闭处理后的磷化膜耐蚀性都有较明显的...  相似文献   

6.
7.
采用中温锌-锰磷化工艺对建筑结构用Q235钢进行了磷化处理。借助表面粗糙度仪、扫描电镜、能谱仪和电化学工作站等仪器,研究了磷化时间对Q235钢表面锌-锰磷化膜的表面形貌及耐蚀性的影响。结果表明:锌-锰磷化处理能改善Q235钢的耐蚀性。磷化膜主要由Zn、Fe、P、Mn、C和O元素组成。随着磷化时间的延长,磷化膜的表面形貌发生变化,表面粗糙度增大,耐蚀性先变好后变差。当磷化时间为25 min时,磷化膜呈岩石状形貌,耐蚀性最好。  相似文献   

8.
为提高碳钢的耐蚀性与冷加工性能,采用电解磷化法制备了锌系电解磷化膜,通过盐雾试验、Tafel曲线及交流阻抗等方法研究了电解磷化工艺对锌系电解磷化膜耐蚀性的影响,并通过X-射线衍射仪分析了电解磷化膜的成分。结果表明,磷化膜成分为Zn_3(PO_4)_2、Fe_3(PO_4)_2,在Jκ为45 A/dm~2,磷化t为10 s,θ为60℃的条件下,电解磷化膜盐雾试验35 h不锈蚀。  相似文献   

9.
锌锰系电解磷化膜工艺的研究   总被引:1,自引:0,他引:1  
在锌锰系电解磷化液中,采用外加电流的方法对工件进行磷化处理,研究了电解磷化工艺对磷化膜性能的影响规律,通过硫酸铜点滴和盐雾试验,电化学方法及扫描电子显微镜和X-射线衍射仪等对电解磷化膜耐蚀性能、微观形貌和膜层成分进行了研究。结果表明,经过电解磷化后,可得到结晶致密的针形结构的电解磷化膜,膜层主要由Mn2Zn(PO4)2、Fe3(PO4)2和MnHPO4.3H2O等成分组成,电解磷化膜经过24 h中性盐雾试验无锈蚀。  相似文献   

10.
马永纯  徐敏 《电镀与涂饰》2021,40(11):853-858
为提高45钢表面锌锰系磷化膜的耐蚀性,采用硅酸盐溶液浸渍的方式进行封闭.选取溶液温度、封闭时间和硅酸钠质量浓度作为因素,以磷化膜的耐硫酸铜点滴腐蚀时间作为指标,采用正交试验方法确定了各工艺参数对磷化膜耐蚀性的影响,通过直观分析法和方差分析法得到最佳封闭工艺参数,并进行了验证,同时比较了封闭前后磷化膜的微观形貌、元素成分...  相似文献   

11.
选取框架结构使用的螺纹钢作为试样,采用传统高温锰系磷化工艺和改进的中温锌系磷化工艺分别进行锰系磷化处理、锌系磷化处理,并比较了不同工艺磷化处理后螺纹钢的形貌、成分和耐蚀性.结果表明:锰系磷化处理和锌系磷化处理后螺纹钢的外观不同,但锰系磷化膜和锌系磷化膜都较致密.锰系磷化膜的成分Mn、P、O、Fe和C元素,锌系磷化膜的成...  相似文献   

12.
针对小波网络训练速率较慢、结构不易确定等问题,结合实验选取的因素(包括输入参数和输出结果),通过仿真确定了小波网络的结构为3-7-1。接着,利用优化遗传算法对小波网络进行改进,修正其初始权值和因子。通过仿真证实了改进的小波网络具备更强的寻优能力和更快的收敛速率。最后,利用改进的小波网络预测锰系磷化膜的耐蚀性。结果表明:改进的小波网络可以更好地拟合样本数据,能够进行较准确的预测。  相似文献   

13.
在含硝酸盐的基础磷化液中分别添加钼酸钠、硝酸镧以及它们的组合作为促进剂,在建筑结构钢表面制备出不同锌钙系磷化膜。研究了促进剂对不同磷化膜的形貌、成分和耐蚀性的影响。结果表明:钼酸钠、硝酸镧以及它们的组合作为促进剂都可以使磷化膜结晶致密化,进而提高磷化膜的耐蚀性。尤其是钼酸钠和硝酸镧的组合作为促进剂,可以明显改善磷化膜的形貌,获得的磷化膜具有良好的耐蚀性,其容抗弧半径最大,电荷转移电阻和低频时的阻抗值分别达到2.476 kΩ·cm2、2.147 kΩ·cm2,表面的液滴变色时间达到165 s。硝酸镧作为促进剂不会对磷化膜的成分产生影响,而钼酸钠以及钼酸钠和硝酸镧的组合作为促进剂对磷化膜的成分有一定影响。使用含钼酸钠和硝酸镧的基础液获得的锌钙系磷化膜更适用于建筑结构钢防腐蚀保护。  相似文献   

14.
在由Mn(H2PO4)2、C6H8O7、NaOH和H3PO4组成的磷化液中加入Ca(NO3)2,考察了体系pH、磷化时间和硝酸钙用量对镁合金AZ31B锰系磷化膜耐蚀性的影响,利用扫描电子显微镜、能谱仪和X射线衍射仪表征了磷化膜的微观结构、元素成分和相结构,用硫酸铜点滴腐蚀试验、动电位极化曲线测量和电化学阻抗谱技术测试了它的耐蚀性。结果表明,添加0.2 g/L硝酸钙所得磷化膜致密、少孔,耐蚀性最好。  相似文献   

15.
设定磷化温度为30~70℃,制备了五种铁系磷化膜。通过电化学腐蚀试验和盐雾试验研究了磷化温度对磷化膜耐蚀性和腐蚀形貌的影响。结果表明:不同磷化温度下制备的五种磷化膜在氯化钠溶液中的腐蚀机制基本相同。随着磷化温度从30℃升高到70℃,磷化膜的自腐蚀电位总体上呈正移的趋势,自腐蚀电流密度呈降低的趋势,极化电阻总体上呈增大的趋势。当磷化温度为70℃时,磷化膜的自腐蚀电位最正,自腐蚀电流密度最低,并且腐蚀前后的形貌差别不大,表现出优异的耐蚀性。  相似文献   

16.
牟世辉 《电镀与精饰》2012,34(7):41-43,46
通过单因素对比实验研究了不同硅烷偶联剂和添加剂对磷化膜封闭的影响,并利用加速腐蚀试验方法和电化学测试技术对硅烷封闭的磷化膜进行了性能测试。结果表明,采用3%硅烷偶联剂KH-560,5g/L硝酸铈的封闭液对锌锰系磷化膜封闭处理后,磷化膜中性盐雾试验72h未见腐蚀。极化曲线测试表明阴阳极过程都受到抑制,且经硅烷封闭的磷化膜自腐蚀电流明显降低。  相似文献   

17.
研究了磷化温度对汽车用冷轧钢板表面锌-锰磷化膜的外观及耐蚀性的影响。结果表明:锌-锰磷化膜主要由Zn、Zn3(PO4)2和MnHPO4组成。当磷化温度低于50℃或超过65℃时,磷化膜的外观和耐蚀性都不太理想;随着磷化温度的升高,磷化膜的色泽趋于均匀,耐蚀性逐渐改善。当磷化温度为60℃时,磷化膜呈深灰黑色且色泽比较均匀,耐硫酸铜点滴时间达到75 s,在盐水中浸泡24 h后磷化膜表面的腐蚀坑数量较少,其耐蚀性明显比未磷化的冷轧钢板的耐蚀性好。  相似文献   

18.
采用中温锌-链磷化工艺对建筑结构用Q235钢进行了磷化处理。借助表面粗糙度仪、扫描电镜、能谱仪和电化学工作站等仪器,研究了磷化时间对Q235钢表面锌-镒磷化膜的表面形貌及耐蚀性的影响。结果表明:锌-镒磷化处理能改善Q235钢的耐蚀性。磷化膜主要由Zn、Fe、P、Mn、C和O元素组成。随着磷化时间的延长,磷化膜的表面形貌发生变化,表面粗糙度增大,耐蚀性先变好后变差。当磷化时间为25 min时,磷化膜呈岩石状形貌,耐蚀性最好。  相似文献   

19.
为提高16Mn钢的耐蚀性,使用添加了硝酸镧的磷化液在16Mn钢表面制备锌-锰系磷化膜,并研究硝酸镧质量浓度对磷化膜的物相组成、表面形貌和耐蚀性的影响。结果表明:硝酸镧对磷化膜的物相组成基本没有影响,但会改变磷化膜表面的平整度和致密性,从而影响其耐蚀性。适当增加硝酸镧质量浓度,使磷化膜表面趋于平整致密,耐蚀性逐步提高。但是,硝酸镧质量浓度过高时磷化膜表面粗糙、致密性降低,导致耐蚀性下降。硝酸镧质量浓度为50 mg/L时制备的磷化膜电荷转移电阻、频率为0.01 Hz的阻抗值以及液滴变色时间均最大,分别达到5.028×103 Ω·cm2、3.12×103 Ω·cm2、186 s,表现出较好的耐蚀性,优于其他磷化膜。原因归结为,适量的硝酸镧可以加快成膜速度,有利于形成紧致密实的磷化膜,具有较强的阻挡腐蚀介质侵蚀能力,从而有效提高16Mn钢的耐蚀性。  相似文献   

20.
锰系黑色磷化膜的制备及性能研究   总被引:1,自引:0,他引:1  
通过单因素试验,研究了马日夫盐、硝酸锰、硝酸镍的质量浓度对磷化膜性能的影响。确定了三者最佳的质量浓度为:马日夫盐40~50g/L,硝酸镍5~6g/L,硝酸锰15g/L。经XRD分析,磷化膜的主要成分为Mn3(PO4)2、(MnFe)2PO4(OH)和Mn3(PO4)2·1.5H2O。膜层表面呈黑色,且结晶均匀、细致。经电化学测试,其耐蚀性良好,适用于钢铁涂装前处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号