首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B-doped a-Si1−xCx:H films for a window layer of Si thin film solar cells have been prepared by the Cat-CVD method. It is found that C is effectively incorporated into the films by using C2H2 as a C source gas, where an only little C incorporation is observed from CH4 and C2H6 under similar deposition conditions. Using a-Si1−xCx:H films grown from C2H2, heterojunction p–i–n solar cells have been prepared by the Cat-CVD method. The cell structure is (SnO2 Asahi-U)/ZnO/a-Si1−xCx:H(p)/a-Si:H(i)/μc-Si:H(n)/Al. The obtained conversion efficiency was 5.4%.  相似文献   

2.
Bi2Ti2O7 thin films have been grown directly on n-type GaAs (1 0 0) by the chemical solution decomposition technique. X-ray diffraction analysis shows that the Bi2Ti2O7 thin films are polycrystalline. The optical properties of the thin films are investigated using infrared spectroscopic ellipsometry (3.0–12.5 μm). By fitting the measured ellipsometric parameter (Ψ and Δ) data with a three-phase model (air/Bi2Ti2O7/GaAs), and Lorentz–Drude dispersion relation, the optical constants and thickness of the thin films have been obtained simultaneously. The refractive index and extinction coefficient increase with increasing wavelength. The fitted plasma frequency ωp is 1.64×1014 Hz, and the electron collision frequency γ is 1.05×1014 Hz, and it states that the electron average scattering time is 0.95×10−14 s. The absorption coefficient variation with respect to increasing wavelength has been obtained.  相似文献   

3.
Conducting and transparent indium-doped ZnO thin films were deposited on sodocalcic glass substrates by the sol–gel technique. Zinc acetate and indium chloride were used as precursor materials. The electrical resistivity, structure, morphology and optical transmittance of the films were analyzed as a function of the film thickness and the post-deposition annealing treatments in vacuum, oxygen or argon. The obtained films exhibited a (002) preferential growth in all the cases. Surface morphology studies showed that an increase in the films' thickness causes an increase in the grain size. Films with 0.18 μm thickness, prepared under optimal deposition conditions followed by an annealing treatment in vacuum showed electrical resistivity of 1.3 × 10 2 Ωcm and optical transmittance higher than 85%. These results make ZnO:In thin films an attractive material for transparent electrodes in thin film solar cells.  相似文献   

4.
Chromium disilicide (CrSi2) films 1 000 Å thick have been prepared by molecular beam epitaxy on CrSi2 templates grown on Si(111) substrate. The effect of the substrate temperature on the structural, electrical and optical properties of CrSi2 films has been studied by transmission and scanning electron microscopies, optical microscopy, electrical resistivity and Hall effect measurements and infrared optical spectrometry. The optimal temperature for the formation of the epitaxial A-type CrSi2 film have been found to be about 750°C. The electrical measurement have shown that the epitaxial A-type CrSi2 film is p-type semiconductor having a hole concentration of 1 × 1017cm−3 and Hall mobility of 2 980 cm2 V−1 s−1 at room temperature. Optical absorption coefficient data have indicated a minimum, direct energy gap of 0.34 eV. The temperature dependence of the Hall mobility (μ) in the temperature range of T = 180–500 K can be expressed as μ = 7.8 × 1010T−3cm2V−1s−1.  相似文献   

5.
New materials for a transparent conducting oxide film are demonstrated. Highly transparent Zn2In2O5 films with a resistivity of 3.9 × 10−4 Ω cm were prepared on substrates at room temperature using a pseudobinary compound powder target composed of ZnO (50 mol.%) and In2O3 (50 mol.%) by r.f. magnetron sputtering. MgIn2O4---Zn2In2O5 films were prepared using MgIn2O4 targets with a ZnO content of 0–100 wt.%. The resistivity of the deposited films gradually decreased from 2 × 10−3 to 3.9 × 10−4 Ω cm as the Zn/(Mg + Zn) atomic ratio introduced into the films was increased. The greatest transparency was obtained in a MgIn2O4 film. The optical absorption edge of the films decreased as the Zn/(Mg + Zn) atomic ratio was increased, corresponding to the bandgap energy of their materials. It was found that the resistance of the undoped Zn2In2O5 films was more stable than either the undoped MgIn2O4, ZnO or In2O3 films in oxidizing environments at high temperatures.  相似文献   

6.
In2O3 thin films have been prepared from commercially available pure In2O3 powders by high vacuum thermal evaporation (HVTE) and from indium iso-propoxide solutions by sol-gel techniques (SG). The films have been deposited on sapphire substrates provided with platinum interdigital sputtered electrodes. The as-deposited HVTE and SG films have been annealed at 500°C for 24 and 1 h, respectively. The film morphology, crystalline phase and chemical composition have been characterised by SEM, glancing angle XRD and XPS techniques. After annealing at 500°C the films’ microstructure turns from amorphous to crystalline with the development of highly crystalline cubic In2O3−x (JCPDS card 6-0416). XPS characterisation has revealed the formation of stoichiometric In2O3 (HVTE) and nearly stoichiometric In2O3−x (SG) after annealing. SEM characterisation has highlighted substantial morphological differences between the SG (highly porous microstructure) and HVTE (denser) films. All the films show the highest sensitivity to NO2 gas (0.7–7 ppm concentration range), at 250°C working temperature. At this temperature and 0.7 ppm NO2 the calculated sensitivities (S=Rg/Ra) yield S=10 and S=7 for SG and HVTE, respectively. No cross sensitivity have been found by exposing the In2O3 films to CO and CH4. Negligible H2O cross has resulted in the 40–80% relative humidity range, as well as to 1 ppm Cl2 and 10 ppm NO. Only 1000 ppm C2H5OH has resulted to have a significant cross to the NO2 response.  相似文献   

7.
A study of growth, structure, and properties of Eu2O3 thin films were carried out. Films were grown at 500–600 °C temperature range on Si(1 0 0) and fused quartz from the complex of Eu(acac)3·Phen by low pressure metalorganic chemical vapor deposition technique which has been rarely used for Eu2O3 deposition. These films were polycrystalline. Depending on growth conditions and substrates employed, these films had also possessed a parasitic phase. This phase can be removed by post-deposition annealing in oxidizing ambient. Morphology of the films was characterized by well-packed spherical mounds. Optical measurements exhibited that the bandgap of pure Eu2O3 phase was 4.4 eV. High frequency 1 MHz capacitance–voltage (CV) measurements showed that the dielectric constant of pure Eu2O3 film was about 12. Possible effects of cation and oxygen deficiency and parasitic phase on the optical and electrical properties of Eu2O3 films have been briefly discussed.  相似文献   

8.
AgInSnxS2−x (x = 0–0.2) polycrystalline thin films were prepared by the spray pyrolysis technique. The samples were deposited on glass substrates at temperatures of 375 and 400 °C from alcoholic solutions comprising silver acetate, indium chloride, thiourea and tin chloride. All deposited films crystallized in the chalcopyrite structure of AgInS2. A p-type conductivity was detected in the Sn-doped samples deposited at 375 °C, otherwise they are n-type. The optical properties of AgInSnxS2−x (x < 0.2) resemble those of chalcopyrite AgInS2. Low-temperature PL measurements revealed that Sn occupying an S-site could be the responsible defect for the p-type conductivity observed in AgInSnxS2−x (x < 2) thin films.  相似文献   

9.
The secondary electron emission (SEE) yield δ of ZnO films was investigated. The films were deposited in an r.f. sputtering system using the r.f. power W, the argon pressure p, the O2 partial pressure pO2 and the substrate temperature Ts as parameters. Complementary measurements of the electrical resistivity and the optical absorption were performed. The ratio x of oxygen to zinc is an essential factor which determines the values of δ, and for the ZnO films.

Auger analyses showed that excess (overstoichiometric, x =1) oxygen is present in ZnO films obtained at room temperature. For x =1 the values of , the maximum SEE yield δm and the energy band gap Eg (determined from ) were found to be higher than those for stoichiometric ZnO (obtained at Ts200 °C). The highest values of (104 Ω m), δm (4.4) and Eg (3.44 eV) were obtained for films with x = 1.7.  相似文献   


10.
Titanium oxide (TiO2) thin films were deposited onto glass substrates by means of spray pyrolysis method using methanolic titanyl acetyl acetonate as precursor solution. The thin films were deposited at three different temperatures namely 350, 400 and 450 °C. As-deposited thin films were amorphous having 100–300 nm thickness. The thin films were subsequently annealed at 500 °C in air for 2 h. Structural, optical and electrical properties of TiO2 thin films have been studied. Polycrystalline thin films with rutile crystal structure, as evidenced from X-ray diffraction pattern, were obtained with major reflexion along (1 1 0). Surface morphology and growth stages based on atomic force microscopy measurements are discussed. Electrical properties have been studied by means of electrical resistivity and thermoelectric power measurements. Optical study shows that TiO2 possesses direct optical transition with band gap of 3.4 eV.  相似文献   

11.
Several methods have been used to prepare ferroelectromagnetic BiFeO3 films. In this paper, we adopted a sol–gel process to fabricate BiFeO3 films on indium tin oxide (ITO)/glass substrates. X-ray diffraction pattern indicated that the samples are randomly oriented. Cross section scanning microscopy showed that the thicknesses of both films were about 1.2 μm and no apparent diffusion between the BiFeO3 films and ITO/glass substrates. Remnant polarization of 2.0 and 1.75 μC/cm2 were identified by the measuring of electric hysteresis loops for the films annealed at 500 and 600 °C respectively at an applied field of 108 kV/cm. Dielectric property and loss factor were investigated as a function of frequency. In addition, magnetism was detected at 77 K.  相似文献   

12.
Transparent conducting fluorine-doped tin oxide (SnO2:F) films have been deposited on glass substrates by pulsed laser deposition. The structural, electrical and optical properties of the SnO2:F films have been investigated as a function of F-doping level and substrate deposition temperature. The optimum target composition for high conductivity was found to be 10 wt.% SnF2 + 90 wt.% SnO2. Under optimized deposition conditions (Ts = 300 °C, and 7.33 Pa of O2), electrical resistivity of 5 × 10− 4 Ω-cm, sheet resistance of 12.5 Ω/□, average optical transmittance of 87% in the visible range, and optical band-gap of 4.25 eV were obtained for 400 nm thick SnO2:F films. Atomic force microscopy measurements for these SnO2:F films indicated that their root-mean-square surface roughness ( 6 Å) was superior to that of commercially available chemical vapor deposited SnO2:F films ( 85 Å).  相似文献   

13.
The formation of photoconducting ZnO and transparent conducting CdO films by high temperature oxidation and thermal decomposition of chemically deposited ZnS and Cd(OH)2 precursor films respectively is reported. The ZnS to ZnO and Cd(OH)2 to CdO conversions were confirmed by x-ray diffraction (XRD)2 electrical and optoelectronic studies. As deposited ZnS and Cd(OH)2 films exhibited very low dark conductivity and no photoconductivity. Air oxidation of ZnS films at about 400°C for at least 15 minutes converted them to ZnO films with higher dark and photoconductivity. Cd(OH)2 to CdO conversion occurred at about 300°C. CdO films exhibited a dark conductivity of the order of 103 (Ωcm)-1 and an optical transmittance in the range of 90%. These characteristics of ZnO and CdO films make them suitable candidates for the development of low cost photoconductors and solar cell structures.  相似文献   

14.
Zinc oxide (ZnO) is well known to the electronic industry as a piezoelectric material. Recent research from this laboratory also indicates the potential of ZnO as a tribological material. The current work describes the evolution of microstructure with deposition parameters in pulsed laser deposited ZnO thin films, specifically targeted for friction and wear applications. Films were characterized by high resolution scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Friction and wear measurements were made using a ball-on-disk tribometer. Films were grown in vacuum (V) as well as in 5 mTorr of oxygen (O2), while the substrates were kept at room temperature (RT). The RT/V ZnO films have (002) columnar texture with an average column width of 20 nm. The RT/O2 films also are nanoclumnar with (002) texture, but each column is a mosaic of low-angle boundaries. Deformation mechanisms associated with nanocrystalline grain structure were analyzed with particular reference to sliding contact. Mechanisms to provide the observed low friction of RT/O2 films (μ=0.15–0.20) have been activated by its mosaic structure.  相似文献   

15.
Thin films of copper indium di-selenide (CIS) with a wide range of compositions near stoichiometry have been formed on glass substrates in vacuum by the stacked elemental layer (SEL) deposition technique. The compositional and optical properties of the films have been measured by proton-induced X-ray emission (PIXE) and spectrophotometry (photon wavelength range of 300–2500 nm), respectively. Electrical conductivity (σ), charge-carrier concentration (n), and Hall mobility (μH) were measured at temperatures ranging from 143 to 400 K. It was found that more indium-rich films have higher energy gaps than less indium-rich ones while more Cu-rich films have lower energy gaps than less Cu-rich films. The sub-bandgap absorption of photons is minimum in the samples having Cu/In ≈ 1 and it again decreases, as Cu/In ratio becomes less than 0.60. Indium-rich films show n-type conductivities while near-stoichiometric and copper-rich films have p-type conductivities. At 300 K σ, n and μH of the films vary from 2.15 × 10−3 to 1.60 × 10−1 (Ω cm)−1, 2.28 × 1015 to 5.74 × 1017 cm−3 and 1.74 to 5.88 cm2 (V s)−1, respectively, and are dependent on the composition of the films. All the films were found to be non-degenerate. The ionization energies for acceptors and donors vary between 12 and 24, and 3 and 8 meV, respectively, and they are correlated well with the Cu/In ratios. The crystallites of the films were found to be partially depleted in charge carriers.  相似文献   

16.
For growth temperatures in the range of 275°C to 425°C, highly conductive RuO2 thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO2/Si(001) and Pt/Ti/SiO2/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO2 films. In the upper part of this growth temperature range ( 350°C) and at a low growth rate (< 3.0 nm/min.), the RuO2 films favored a (110)-textured orientation. In contrast, at the lower part of this growth temperature range ( 300°C) and at a high growth rate (> 3.0 nm/min.), the RuO2 films favored a (101)-textured orientation. In contrast, higher growth temperatures (> 425°C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50–80 nm and a rms. surface roughness of 3–10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34–40 μΩ-cm (at 25°C).  相似文献   

17.
Thin tantalum oxide films were deposited using atomic layer deposition from TaCl5 and H2O at temperatures in the range 80–500 °C. The films deposited at temperatures below 300 °C were predominantly amorphous, whereas those grown at higher temperatures were polycrystalline containing the phases TaO2 and Ta2O5. The oxygen to tantalum mass concentration ratio corresponded to that of TaO2 at all growth temperatures. The optical band gap was close to 4.2 eV for amorphous films and ranged from 3.9 to 4.5 eV for polycrystalline films. The refractive index measured at λ = 550 nm increased from 1.97 to 2.20 with an increase in growth temperature from 80 to 300 °C. The films deposited at 80 °C showed low absorption with absorption coefficients of less than 100 cm−1 in the visible region.  相似文献   

18.
P.C. Joshi  S.B. Desu 《Thin solid films》1997,300(1-2):289-294
Polycrystalline BaTiO3 thin films having the perovskite structure were successfully produced on platinum coated silicon, bare silicon, and fused quartz substrate by the combination of the metallo-organic solution deposition technique and post-deposition rapid thermal annealing treatment. The films exhibited good structural, electrical, and optical properties. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) and metal-ferroelectric-semiconductor (MFS) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 255 and 0.025, respectively, and the remanent polarization and coercive field were 2.2 μC cm−2 and 25 kV cm−1, respectively. The resistivity was found to be in the range 1010–1012 Ω·cm, up to an applied electric field of 100 kV cm−1, for films annealed in the temperature range 550–700 °C. The films deposited on bare silicon substrates exhibited good film/substrate interface characteristics. The films deposited on fused quartz were highly transparent. An optical band gap of 3.5 eV and a refractive index of 2.05 (measured at 550 nm) was obtained for polycrystalline BaTiO3 thin film on fused quartz substrate. The optical dispersion behavior of BaTiO3 thin films was found to fit the Sellmeir dispersion formula well.  相似文献   

19.
Zirconium doped indium oxide thin films were deposited by the atomic layer deposition technique at 500 °C using InCl3, ZrCl4 and water as precursors. The films were characterised by X-ray diffraction, energy dispersive X-ray analysis and by optical and electrical measurements. The films had polycrystalline In2O3 structure. High transparency and resistivity of 3.7×10−4 Ω cm were obtained.  相似文献   

20.
Silicon nitride films for applications in optical waveguides have been deposited by plasma-enhanced chemical vapour deposition (PECVD). Index of refraction, deposition rate, buffered HF etch rate and hydrogen content have been measured for different NH3-to-SiH4 ratios of precursor gases in the range 0.6–10. Results show that these magnitudes are nearly constant for 2NH3:SiH44. Thermal annealing of films deposited at high NH3:SiH4 ratios yields a large reduction (up to 70%) in the N---H bond concentration as well as a densification of the films. Finally, geometrical parameters necessary for the design of rib-type monomode optical waveguides based on the PECVD silicon nitride films were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号