首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The timing of the preovulatory surge of LH in female rodents is tightly coupled to the environmental light/dark cycle. This coupling is mediated by the circadian pacemaker located in the suprachiasmatic nuclei (SCN). Studies indicate that vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP), which are synthesized in the SCN, transmit circadian information from the SCN to GnRH neurons, thereby regulating the timing of the LH surge. However, to date, the rhythmic expression of these two peptides in the SCN has only been examined in males. The pattern of VIP expression in males is difficult to reconcile with its role in the LH surge. The purpose of the present study was to assess the rhythm of VIP messenger RNA (mRNA) levels in the SCN of female rats under several endocrine conditions. We compared this rhythm to that in males and to AVP mRNA rhythms in all experimental groups. In all groups of females, VIP mRNA levels were rhythmic, with peak expression occurring during the light phase and a nadir occurring during the dark phase. The rhythm was approximately 12 h out of phase compared with that in males. The rhythmic expression of AVP mRNA in the SCN was virtually identical in all groups of animals. Based on these results, we conclude that 1) the rhythm of VIP seen in the SCN of females during the day may serve as a facilitory signal from the SCN to GnRH neurons; 2) the sex-specific pattern of VIP mRNA does not depend on estradiol; and 3) AVP gene expression within the SCN is not sexually differentiated or altered by estradiol.  相似文献   

2.
The present study has combined recording of circadian locomotor rhythms with light microscopic immunocytochemistry for vasoactive intestinal polypeptide (VIP) in the suprachiasmatic nucleus (SCN) of congenitally anophthalmic mice. These mice, which never develop retinae or optic nerves and do not perceive light, are thus in constant darkness. Our data show a circadian rhythm in expression of VIP in the SCN of anophthalmic mice--expression is maximal during late subjective night/early subjective day and minimal in late subjective day/early subjective night. These observations support the hypothesis that expression of VIP is related to regulation of circadian rhythms by the SCN.  相似文献   

3.
The participation of GABAergic mechanisms in the regulation of circadian rhythmicity by the suprachiasmatic nuclei (SCN) has been suggested from different lines of evidence. Little is known, however, whether GABA synthesis, release, uptake or content within the SCN may show a circadian pattern. The present results show that the activity of the GABAergic system within the SCN region of the rat exhibits circadian rhythmicity, which is manifested by correlative changes of the GABA content and the glutamic acid decarboxylase activity under the light/dark cycle, and by changes in the GABA content in animals kept under constant darkness.  相似文献   

4.
The suprachiasmatic nuclei (SCN) express the highly polysialylated form of the neural cell adhesion molecule (NCAM) that has been proposed to promote plasticity in the adult brain. To investigate a role for NCAM in SCN circadian clock function, we examined the daily locomotor rhythm of mice homozygous for a mutation, Ncamtm1Cwr, which results in deletion of the NCAM-180 isoform that in brain carries polysialic acid (PSA). Mutant mice entrained well to a 12 hr light/dark cycle but exhibited a significantly shortened free-running period and longer activity duration under constant darkness (DD) than did wild-type mice. By the third week of DD treatment, circadian rhythmicity in the mutant was abolished. Immunocytochemical analyses of the mutant SCN revealed an abnormal number and distribution of vasoactive intestinal polypeptide-producing neurons, suggesting a developmental effect of the mutant phenotype; however, a direct physiological effect of the mutation on clock function was indicated by the fact that removal of PSA from adult wild-type SCN by microinjection of endoneuraminidase shortened the free-running period to a similar extent as in the mutant. Together, these data indicate critical roles for NCAM and PSA in the development and physiology of the mammalian SCN circadian clock.  相似文献   

5.
Pituitary adenylate cyclase-activating polypeptide (PACAP) was recently demonstrated to stimulate melatonin synthesis in the rat pineal gland. Circadian rhythms of melatonin concentration are well known. However, it has not been clarified whether PACAP contents in the pineal gland show circadian rhythm. In this study, we measured PACAP contents in the rat pineal gland throughout the day under 12:12 h light-dark cycle or constant dark conditions. A significant fluctuation was observed in the PACAP content under light-dark conditions but not under constant darkness. On the other hand, the pituitary gland showed no significant variation throughout the day under either conditions. These observations suggest that PACAP may participate in the modulation of melatonin synthesis depending on light conditions in the pineal gland.  相似文献   

6.
Aging leads to a decrease in circadian organization of behavior. Whether this general observation is related to the finding that in older subjects the arginine-vasopressin (AVP) system in the suprachiasmatic nucleus (SCN) has deteriorated is an unsolved question. Here we assessed circadian organization of running wheel behavior and numbers of AVP cells in the SCN of old voles (n=12, 11. 5 months of age) and compared the results with data from young voles (n=16, 4.5 months of age). A third of the young voles, but three-quarter of the old voles lost circadian rhythmicity. Analysis of daily onset to onset periodicity of running wheel activity at the age of 5 and 10 months in individual voles revealed a significant loss of precision of circadian rhythmicity at the higher age. The number of AVP cells in the SCN of old voles decreased substantially, over 78% compared to young voles in general. AVP cell numbers, however, cannot be directly correlated with the state of rhythmicity in old voles; in one of the three circadian rhythmic old voles the SCN contained the least AVP cells. This study does not support the idea of a causal relationship between aging induced reduction in AVP cells in the SCN and the presence of circadian rhythmicity in behavior.  相似文献   

7.
In their ultradian (2- to 3-hr) feeding rhythm, common voles show intraindividual synchrony from day to day, as well as interindividual synchrony between members of the population, even at remote distances. This study addresses the question of how resetting of the ultradian rhythm, a prerequisite for such synchronization, is achieved. Common voles were subjected to short light-dark cycles (1 hr darkness with light varying between 0.7 and 2.5 hr); to T cycles (long light-dark cycles in the circadian range--16 hr darkness and 3-13 hr light); to light pulses (15 min) during different circadian and ultradian phases; and to addition of D2O to the drinking water (25%). Short light-dark cycles and D2O were also applied to voles without circadian rhythmicity, after lesions of the suprachiasmatic nuclei. In these experiments, four hypotheses on synchronization of ultradian rhythmicity were tested: (I) synchronization by a direct response to light; (II) synchronization via the circadian system with multiple triggers, here called "cogs," each controlling a single ultradian feeding bout; and (III and IV) synchronization via the circadian system with a single "cog," which resets an ultradian oscillator and either (III) originates directly from the circadian pacemaker, or (IV) is mediated via the overt circadian activity rhythm. Short light-dark cycles failed to entrain ultradian rhythms, either in circadian-rhythmic or in non-circadian-rhythmic voles; light pulses did not cause phase shifts; and in extreme T cycles no stable phase relationship with light could be demonstrated. Thus, Hypothesis I was rejected. Changes in the circadian period (tau) were generated as aftereffects of light pulses, by entrainment in various T cycles, and by the addition of D2O to the drinking water. These changes in tau did not lead to parallel, let alone proportional, changes in the ultradian period. This excluded Hypothesis II. Both in T-cycle experiments and in the D2O experiments with circadian-rhythmic voles, the phase of ultradian feeding bouts was locked to the end of circadian activity rather than to the most prominent marker of the pacemaker, the onset of circadian activity. This was not expected under Hypothesis III, but was consistent with entrainment via activity (Hypothesis IV). On the basis of these experiments, we conclude that the most likely mechanism of ultradian entrainment is that of a light-insensitive ultradian oscillator, reset every dawn by the termination of the activity phase controlled by the circadian pacemaker, which is itself entrained by the light-dark cycle. Neither in circadian-rhythmic nor in non-circadian-rhythmic voles was the period of the feeding rhythm lengthened by administration of D2O. This insensitivity to deuterium is exceptional among biological rhythms.  相似文献   

8.
Calorie restriction can induce phase-advances of daily rhythms in rodents exposed to light-dark cycles. To test whether glucose-responsive neurons are involved in the synchronizing effects of calorie restriction, C57BL/6J mice were injected with gold-thioglucose (GTG; 0.6 g/kg) which damages glucose-responsive neurons, primarily located in the ventromedial hypothalamus. From the day of injection, GTG-treated and control mice received a hypocaloric diet (66% of ad libitum food intake) 2 h after lights on. When mice were transferred to constant darkness after 4 weeks and fed ad libitum, the onset of circadian rhythm of locomotor activity was phase-advanced by 1 h in control but not in GTG-treated mice. Therefore, glucose-responsive neurons in the ventromedial hypothalamus may play a role in the synchronizing effects of calorie restriction on circadian rhythmicity.  相似文献   

9.
Intraventricular administration of carbachol can induce phase shifts in wheel-running activity in rodents, which depend on circadian phase and are mediated via muscarinic cholinergic receptors in Syrian hamsters. We studied the circadian variation in binding of [3H]-N-methylscopolamine ([3H]NMS), a hydrophilic muscarinic receptor antagonist, in micropunches obtained from the anterior hypothalamus and occipital cortex of Syrian hamsters housed in a 14:10 light:dark cycle. Binding sites were characterized on cells contained within 1 mm punches (obtained from slices 300 microm thick), using a method to selectively detect cell surface (functional) receptors. Atropine sulphate was used to determine nonspecific binding. Cortex showed a significant daily rhythm in [3H]NMS binding with a peak occurring late in the light phase and a trough at lights on, while the hypothalamus showed no detectable rhythm. Following suprachiasmatic nucleus (SCN) ablation or maintenance in constant darkness, the rhythm in the cortex was abolished. These findings suggest that photic information conveyed via the SCN is responsible for the receptor binding rhythm in the cortex. Autoradiographic studies ([3H]NMS; 2 nM, 3 weeks exposure) clearly revealed both M1 and M2 subtypes of muscarinic receptors in the region of the SCN and the visual cortex.  相似文献   

10.
To determine whether the circadian rhythms in blood pressure (BP), heart rate (HR) and locomotor activity are controlled by an internal biological clock located in the suprachiasmatic nucleus (SCN), we continuously measured these parameters in SCN-lesioned rats using a newly developed implantable radiotelemetry device and a computerized data collecting system. Although SCN-lesioned rats showed a weak but significant 24-h periodicity in BP and HR under light-dark (LD) cycles, BP, HR and locomotor activity became completely aperiodic under constant dark (DD) conditions. The amount of locomotor activity was significantly reduced in SCN-lesioned rats compared to that in intact rats. BP tended to be higher in SCN-lesioned rats, but the differences were significant only in the comparison of systolic blood pressure (SBP) under LD and DD (p < 0.05) and of mean blood pressure (MBP) under LD (p < 0.05). HR in SCN-lesioned rats was significantly lower under LD (p < 0.05), but not under DD. The standard deviation and the variation coefficient of MBP, as indices of short-term variability of this parameter, were significantly larger in SCN-lesioned rats than in intact rats, while those of HR and locomotor activity did not differ significantly between SCN-lesioned and intact rats. These results indicate that the SCN is important not only for generating circadian rhythms of BP, HR and locomotor activity, but also for buffering the short-term variability of BP in rats.  相似文献   

11.
Neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus exhibit a daily rhythm in spontaneous electrical activity. Essentially two methods have been employed to record this circadian rhythm: (1) an in vitro brain slice technique and (2) in vivo multiunit recordings. Reentrainment of a circadian output to a shifted light:dark cycle commonly takes several cycles (depending on the amount of shift) until completed. Such a resetting kinetic has also been shown to be valid for SCN electrical activity if recorded in vivo. In an in vitro slice preparation, however, pharmacologically induced resetting is much faster and lacks transients; that is, a shift is completed within one cycle. This study was designed to probe for the presence of transients in the neuronal activity of the SCN in a brain slice preparation. The authors exposed Djungarian hamsters to an 8-h advanced or delayed light:dark cycle and monitored wheel-running activity during reentrainment. Additional groups of identically treated hamsters were used to record the pattern of spontaneous neuronal activity within the SCN using the brain slice preparation. Neuronal activity exhibited the usual rhythm with high firing rates during the projected day and low firing rates during the projected night. However, following 1 day of exposure to the 8-h advanced light:dark cycle, this rhythm disappeared in 6 of 7 slices. Rhythmicity was still absent following 3 days of exposure to the advanced light:dark cycle (n = 4). By contrast, 3 of 7 slices prepared from hamsters exposed to a delayed light:dark cycle for 3 days exhibited a daily rhythm in electrical activity. Although pharmacological agents reset the in vitro SCN neuronal activity almost instantaneously and in in vivo studies a stable phase relationship to a shifted light:dark cycle occurs gradually over several cycles, the authors did not detect either of these patterns. Such differences in resetting kinetics (e.g., rapid resetting, gradual reentrainment, temporary lack of measurable rhythmicity) may be due to (a) application of a resetting stimulus in vivo versus in vitro, (b) duration of the resetting stimulus, (c) the nature of the resetting stimulus, or (d) the recording technique employed.  相似文献   

12.
13.
Compared running wheels and spring-suspended cages as measurement devices for evaluating circadian locomotor activity rhythm. 12 golden hamsters were tested individually in a spring-suspended cage; 6 also had access to running wheels. Ss were exposed to 5 different levels of constant illumination, each condition lasting for several wks, and to a light-dark cycle. The onset of activity in the spring-suspended cage preceded the onset of activity in the running wheel by an amount which is a function of the circadian period. The increment by which the period changes in response to changes in light intensity equals, approximately, the changes of the interval between the 2 onsets. Animals with access to a running wheel show a tendency towards longer circadian periods. (16 ref.) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
The characteristics of the circadian rhythm of locomotor activity in the crayfish Procambarus clarkii during ontogeny under constant darkness and light-dark (LD 12:12) conditions were studied in 132 juvenile crayfish, aged 10-140 days, divided in four groups. All animals were individually monitored with a motor activity recording system. Activity was quantitatively and qualitatively analyzed. All ages showed a circadian rhythm, although the probability of its appearance increased with age. Period values oscillated between 25.0 h in group I (2-4-week-old animals) and 24.3 h in group IV (16-20-week-old animals with more than 6 molts), but always with a high standard deviation. Groups II (5-10-week-old animals) and IV showed a statistically significant bimodal nonrandom synchrony of phases. The activity/ rest relationship diminishes as development progresses and is most uniform in group IV. We discuss the possibility that the pacemaker system responsible for this rhythm might be present from the moment of eclosion, but the coupling strength of this system with the effectors might change along development. The results presented in this work seem to indicate that the central pacemakers responsible for the activity and the ERG rhythm are not the same.  相似文献   

15.
Regulation by light and darkness of melatonin rhythms in the plasma and eye of the European sea bass (Dicentrarchus labrax) was studied. During light-dark cycles, plasma and ocular melatonin exhibited day-night changes with higher levels at mid-dark and at mid-light, respectively. Circulating melatonin levels were low in constant light but high in constant darkness (DD); ocular melatonin levels showed the reverse pattern. Plasma melatonin exhibited circadian rhythm for 1 cycle but the rhythm was no longer apparent on day 2. There was no circadian rhythm in ocular melatonin. Acute light exposure in DD decreased plasma melatonin but increased ocular melatonin. These results suggest that circulating melatonin may be used as a signal for darkness but ocular melatonin is used as a signal for the light phase.  相似文献   

16.
The objective of the present study was to investigate the circadian and the ultradian rhythms of drinking behavior in Wistar rats maintained under conditions of constant darkness. Six mature male rats (weighing 270-350 g) were exposed to light-dark 12:12-h cycles (LD 12:12, light on at 12:00 h) for 35 days and then switched to constant darkness (DD) conditions for at least 2 weeks. Drinking behavior was monitored continuously with a standard drinkometer circuit and the data was stored in 5-min bins. A modification of Enright's periodogram technique was used to evaluate the free-running drinking behavior circadian rhythm. Ultradian rhythms in drinking behavior were estimated by the Fast Fourier Transform (FFT) technique. Two of the animals (rats 4 and 6) showed no statistically significant circadian or ultradian rhythms and the other four showed free-running drinking circadian rhythm behavior shorter than 24 h (ranging from 23.333 to 23.967 h). Ultradian rhythms of drinking behavior of 12- and 8-h periods were detected in 4 (rats 1, 2, 3 and 5) and 2 (rats 1 and 5) animals, respectively. The relation of the compound structure of the circadian and ultradian rhythms is discussed demonstrating that drinking behavior is a good marker for studies of physiology of temporal organization.  相似文献   

17.
Circadian rhythms are generated by the suprachiasmatic nuclei (SCN) and synchronized (entrained) to environmental light-dark cycles by the retinohypothalamic tract (RHT), a direct pathway from the retina to the suprachiasmatic nuclei. In anophthalmic mice, the optic primordia are resorbed between embryonic days 11.5 and 13, before retinal ganglion cells emerge. Thus the retinohypothalamic tract, which is the primary "zeitgeber" for circadian rhythms in sighted animals, never forms, and there is no retinal or photic input to the circadian system. We have used wheel running activity, a highly consistent and reliable measure of circadian rhythmicity in rodents, to establish the properties of endogenous locomotor rhythms of anophthalmic mice. We have identified three subpopulations of anophthalmic mice: a) rhythmic with strong stable circadian period but significantly increased period length; b) rhythmic with unstable circadian period; and c) arrhythmic. Future correlation of locomotor rhythms with properties of the suprachiasmatic nuclei in these mice will clarify the relationship between generation and properties of circadian rhythms and the neuroanatomical, neurochemical, and molecular organization of the circadian clock.  相似文献   

18.
The blind mole rat, Spalax, is a subterranean rodent with atrophied, subcutaneous eyes. Whereas most of the visual system is highly degenerated, the retino-hypothalamic pathway in this species has remained intact. Although Spalax is considered to be visually blind, circadian locomotor rhythms are entrained by the light/dark cycle. In the present study we used anterograde tracing techniques to demonstrate retinal afferents to the suprachiasmatic nucleus (SCN) and immunohistochemistry to examine the distribution of neuropeptides that are known to be involved in the regulation or expression of circadian rhythmicity. Based on the localization of retinal afferents and neuropeptides, the SCN can be divided into two subdivisions. The ventral region, which receives retinal afferents, also contains vasoactive intestinal polypeptide (VIP)-containing neurons, and fibers that are immunopositive to neuropeptide Y (NPY) and serotonin (5-HT). The dorsal region contains vasopressinergic neurons, but this latter cell population is extremely sparse compared to that described in other rodents. The dorsal region is also characterized by numerous VIP-immunoreactive fibers. The presence of NPY and 5-HT fibers suggests that the SCN receives afferent projections from the intergeniculate leaflet and from the raphe nuclei, respectively. These neuroanatomical results, together with previous studies of behavior, visual tract tracing, and immediate early gene expression, confirm that an endogenous clock and the capacity for light entrainment of circadian rhythms are conserved in the blind mole rat.  相似文献   

19.
The orphan nuclear receptor RORbeta is expressed in areas of the central nervous system which are involved in the processing of sensory information, including spinal cord, thalamus and sensory cerebellar cortices. Additionally, RORbeta localizes to the three principal anatomical components of the mammalian timing system, the suprachiasmatic nuclei, the retina and the pineal gland. RORbeta mRNA levels oscillate in retina and pineal gland with a circadian rhythm that persists in constant darkness. RORbeta-/- mice display a duck-like gait, transient male incapability to sexually reproduce, and a severely disorganized retina that suffers from postnatal degeneration. Consequently, adult RORbeta-/- mice are blind, yet their circadian activity rhythm is still entrained by light-dark cycles. Interestingly, under conditions of constant darkness, RORbeta-/- mice display an extended period of free-running rhythmicity. The overall behavioral phenotype of RORbeta-/- mice, together with the chromosomal localization of the RORbeta gene, suggests a close relationship to the spontaneous mouse mutation vacillans described >40 years ago.  相似文献   

20.
Recent studies demonstrated that nonphotic (social) cues markedly accelerate reentrainment to large phase shifts of the light-dark (LD) cycles in female Octodon degus and that such changes are likely effected by chemosensory stimuli. This experiment investigated the effects of olfactory bulbectomies on (1) socially facilitated reentrainment rates of circadian rhythms following a 6-h phase advance of the LD cycle, (2) photic reentrainment rates of circadian rhythms following a 6-h advance of the LD cycle, (3) photic entrainment, and (4) the circadian period (tau) of activity rhythms in constant darkness (DD). olfactory bulbectomies (BX) blocked socially facilitated reentrainment rates but did not alter reentrainment rates of circadian rhythms to photic cues alone. In addition, BX lowered mean daily locomotor activity levels and decreased the amplitude of the activity rhythm in degus housed in entrained (LD 12:12) conditions but did not alter the phase of activity onset or offset, duration (alpha) of activity, or mean daily core body temperature. Bulbectomies also failed to modify tau of free-running activity rhythms. This experiment confirms that the olfactory bulbs and chemosensory cues are necessary for socially facilitated reentrainment. In contrast to their effects in nocturnal rodents, BX do not produce significant circadian photic changes in diurnal degus. This is the first experiment to determine that chemosensory stimuli modulate the circadian system in a diurnal rodent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号