首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
据苏联C.A米罗诺夫等介绍,根据高炉矿渣和熟料在水杨酸、丙酮——乙醇中的选择可溶性的萃取法是最准确的方法.萃取时利用由2.5克水杨酸、35毫升丙酮和15毫升乙醇组成的溶液.在用这些溶液处理熟料和矿渣时:C_3S的不溶残渣为2.5%,C_2S的不溶残渣为16.3%,C_3A的不溶残渣为96.5%,C_4AF的不溶残渣为99.5%,而矿渣的不溶性残渣量在95%以上.因此,根据水泥中不同的残渣量,即可按下式计算矿渣的掺量:  相似文献   

2.
在苏联,矿渣硅酸盐水泥的产量占水泥总产量的30%以上,因此研究掺超塑化剂C-3的矿渣硅酸盐水泥混凝土及拌合物的性能是现实的.超塑化剂C-3由混凝土及钢筋混凝土科学研究院研制,新莫斯科有机合成厂生产.研究用400号矿渣硅酸盐水泥,熟料含量60%,矿渣40%,石膏4.5%.熟料的矿物组成(%):C_3S—58.8;C_2S—19.02;C_3A—5.48;C_4AF—14.22.矿渣的化学成份(%):SiO_2—38.13;Al_2O_3—10.22;  相似文献   

3.
我厂出厂水泥合格率达到100%,而且一般超出国家标准规定30号左右。现将我们控制出厂水泥质量的做法介绍于后,供各立窑厂参考。一、出窑熟料按质分仓存放,分别入磨熟料出窑进行分选,把黑色块状作为一级品,碎粒作为二级品,筛出黄粉掺入生料中回烧。磨制500号水泥,则多用一级熟料;磨制300~400号水泥,则多用二级碎熟料。并根据熟料质量变化情况及矿渣活性大小来调整各种熟料配比。二、混合材掺量适当我厂主要生产矿渣水泥,为保证出厂水泥标号符号规定,我们严格控制矿渣掺入量既不过多,又不过少。过多,影响强度;过少,影响产品成本。我厂矿渣掺入量在25~30%,石膏掺入量为4%(SO_3 1.8~2%),同时还掺加1~5%的煤渣。三、控制水泥细度  相似文献   

4.
低温熟料(LWC)以12CaO·7Al_2O_3(C_(12)A_7)和2CaO·SiO_2(C_2S)为胶凝性矿物成分,属于绿色水泥基材料。研究了低温熟料对硅酸盐水泥水化的影响,测试了水泥的凝结时间、早期化学收缩、力学性能和砂浆限制膨胀率,观察了掺低温熟料的水泥浆体微观形貌。结果表明,低温熟料促进了水泥水化硬化;10%低温熟料、75%P·Ⅱ硅酸盐水泥和15%粉煤灰构成的三元胶凝材料3 d、28 d抗压强度分别为31.0、68.2MPa,3 d、28 d抗折强度分别为6.3、9.5 MPa;复掺硬石膏,低温熟料提高了钙矾石生成量,可补偿水泥基材料的收缩。低温熟料可部分替代硅酸盐熟料生产通用硅酸盐水泥。  相似文献   

5.
几年来,我们对生产高级水泥熟料,进行了探讨,现将一些体会和意见提供有关单位参考。一、高级水泥熟料的矿物组成根据许多学者的研究,在硅酸盐水泥熟料四种主要矿物 C_3S、C_2S、C_3A 和 C_4AF 中,以 C_3S的绝对强度提高,C_3A 硬化最快。因此,许多学者认为生产高级水泥,熟料中的 C_3S 应在70%左右,C_3A 应在15%以上。苏联专家谢尔金,则认为高阿利特水泥水化时生成球状 Ca(OH)_2和板状的2CaO·SiO_2·aq,使水泥石不能形成致密的结构,而且产生内应力,使水泥强度的增长急剧地减缓,甚至使水泥强度下降。因此,认为高级水泥熟料中,C_3S 和 C_3A 不宜太高,他  相似文献   

6.
针对前期水泥生产中存在的问题,分别就熟料粉比表面积、矿渣粉微观结构及颗粒分布、石膏类型及掺量等对大掺量矿渣水泥3d强度的影响,掺加石灰石对矿渣粉活性及莱歇磨产量的影响,进行了试验研究与对比分析。结果表明,熟料粉不宜磨得过细,否则易引起球磨机包球现象,影响磨机产量,而且熟料过细粉磨对水泥强度的贡献不大;矿渣中掺加少量石灰石的增产效果显著,同时还能有效地提高矿粉的7d活性;矿渣粉的比表面积宜控制在430~450m2/kg,若比表面积过高,不利于莱歇磨产量的提高和电耗的降低。  相似文献   

7.
建材科学研究院在CaO-SiO_2-Al_2O_3-Fe_2O_3-SO_3五元系统的理论研究中,发现了铁铝酸盐水泥。实验室研究结果表明,这种水泥熟料的原料来源广,煅烧温度低,易磨好。其主要矿物组成是:C_4AF、C_4A_3S和β-C_2S。通过性能试验得出,用该熟料制成的水泥具有快硬、高强、膨胀和耐硫酸盐腐蚀等优良性能,是一个多功能、多用途的水泥新品种。在实验室研究的基础上,1982年3月,我们将铁铝酸盐水泥的研究工作转入工业试制阶段。铁铝酸盐水泥的工业试制,是在琉璃河水泥试验厂进行的。采用含Fe_2O_3为13~19%的铁矾土,以及普通的石灰石和石膏作为原料。燃料是一般工业用煤。配料范围是:C_4AF16~32%;C_4A_3S43~57%;β-C_2S20~2%。生料制备方法采用干法工艺。各种原料经分别破碎,按一定比例配合,然后在雷蒙磨中混合粉磨。生料细度控制4900孔筛筛余在3%以下。生料成分主要用CaO含量来控制,CaO含量波动范围是±0.5%。熟料煅烧在φ1.0×21.9米干法回转窑内进行。  相似文献   

8.
苏联水泥研究院,利用转炉炼钢所得到的含Al_2 O_3 40%和CaO 50—55%的石灰——矾士矿渣,制得了两种新型熔融矾士水泥熟料。第一种是用苏林斯克矾士与石灰——矾士矿渣制得的高铁熟料,其化学成分为SiO_2 5—7%;Al_2 O_3 39~42%;(Fe_2 O_3 FeO)8~10%;CaO38~41%;TiO_2 3.5—4.5%。当水泥比面积为3000平方厘米/克时,其强度如表1所示。第二种是将炼钢所得石灰-矾士矿渣熔于钛—铝矿渣中而制得的熟料。用其制成的水泥化学成分为:SiO_2 2.5—4.0%;Al_2 O_3 40—45%;(Fe_2 O_3 FeO)2—4%;CaO 38—40%;  相似文献   

9.
近年来,矿渣分别粉磨技术已得到长足发展,经过单独粉磨后的矿渣微粉,比表面积控制到〉400m2/kg以上,活性很发挥好,与硅酸盐水泥混合,其掺量可以达到40%~50%或更高,同时降低了熟料的掺加量。矿粉作为外加剂直接掺入混凝土,改变了混凝土的性能。矿渣的应用已基本发挥了其物理化学性能。  相似文献   

10.
苏联西伯利亚水泥科研设计院根据下塔吉尔水泥厂的条件选择了生产400~#矿渣波特兰水泥的最佳组成(熟料、矿渣和石膏的含量)、分散度及工艺。该厂熟料中活性矿物 C_3S 和 C_3A 的年平均含量为65.8%(C_3S=59.6%,C_3A=6.2%)。  相似文献   

11.
将来自熟料、混合材中的硫酸盐归类为原生硫酸盐,研究了在生料中掺入不同类型和含量的硫酸盐,如Ca SO_4、Na_2SO_4、K_2SO_4,对高温烧制的硅酸盐水泥熟料矿物组成的影响。结果表明,未掺硫酸盐时,熟料矿物组成以C_3S、C_3A为主;掺入Ca SO_4时,熟料的主要矿物组成为C_3S,C_3A的含量减少,C_3S的结构由R型向M2型转变;掺入Na_2SO_4抑制了C_3S的生成,提高了C_2S的生成量,促进了C_3A的生成,随着其掺量的增加,C_3S的晶型向M1、T1、T3型转变;掺入K_2SO_4有利于C_3S和C_4AF的形成,抑制C_3A的生成,随着其掺量的增加,C_3S晶型逐渐向M1、M2型转变。  相似文献   

12.
我厂过去单纯依靠化学分析控制水泥原料和混合材的质量,这样很不及时.目前,利用偏光显微镜进行岩相分析,测定原料(石灰石、粘土)中的石英含量和水淬矿渣中的玻璃质含量.经过几个月的试验,基本上摸到生料中石英含量对熟料产量的影响,如果石英含量从2.5%降低到1.5%,则熟料产量可提高10%以上;矿渣中玻璃质如能达到85%以上,则400号水泥中矿渣掺加量就可保持50%.这样,就基本找出了石灰石、粘土中石英含量的高低对熟料产量的影响和水淬渣矿渣中玻璃质含量的高低对水泥质量和矿渣掺加量的关系,就能在很大程度上作到对水泥质量的事先控制.  相似文献   

13.
CaO—SiO_2—Al_2O_3—Fe_2O_3—SO_3系统的硫铝酸盐贝利特熟料,可使用石灰石、石膏和粉煤灰为原料制造,其熟料的相组成可从原料组成计算出来.流态床燃烧生成的飞灰一般不适于用作用料,因为它含有较高的硫,但硫铅酸钙水泥熟料提出了使它成为水泥原料的途径.CaO—SiO_2—Al_2O_3—Fe_2O_3—SO_3—CaF_2系统的混合物在1350℃烧成为快硬水泥.这种水泥在10分钟左右即可形成钙矾石而固化,2天和28天的强度分别为7~28MPa和45~64MPa,强度的变化取决于矿物组成中C_3A/C_(11)A_7CaF_2/C_2S/C_4AF的比例.  相似文献   

14.
研究了以钢渣替代矿渣,掺加激发剂粉磨后作为复合矿渣粉,分别研究了直接取代、掺加水泥熟料复配两种方法的钢渣利用比例及对活性等指标的影响。实验结果表明,钢渣直接取代矿渣时,取代比例小于16%时,7 d、28 d活性等指标符合S95矿粉标准要求;钢渣∶矿渣∶水泥熟料配比为40∶45∶15时,复合矿粉活性等指标符合S95矿粉标准要求。  相似文献   

15.
本文通过对17种不同成分的水泥(细度相同)和掺30%粉煤灰的该17种水泥的砂浆试块的强度对比试验,分析了水泥组成与粉煤灰强度贡献的相关性。实验结果指出,17种掺粉煤灰砂浆强度与基准水泥砂浆强度的比值波动在0.65~0.90之间。显然,水泥的成分对粉煤灰强度的贡献有很大的影响。回归分析表明,水泥中的K_2O、KH及C_8S对粉煤灰强度贡献起积极的作用,而它们中的CaSO_4和C_2S成分则起消极作用。本文最后提出了根据水泥成分来估算粉煤灰强度贡献的方程,依此夹选定生产粉煤灰水泥所需的理想熟料成分。  相似文献   

16.
我厂从去年10月开始,利用工业废料——铜矿渣作矿化剂.矿渣的化学成分如下: SiO_2 Al_2O_3 FeO CaO ZnO Cu MgO 23.79 18.63 26.37 21.14 5.98 1.03微量铜矿渣中含有氧化锌和氧化亚铁,氧化锌是生产白水泥的良好矿化剂,氧化亚铁的熔点比三价铁的熔点低,所以铜矿渣是一种良好的混合矿化剂,其矿化作用比一般常用的萤石还好.我们用铜矿渣作矿化剂的结果也证明了这点.试验时,生料中铜矿渣掺加量为0.5、1.0和1.8%.掺加铜矿渣后,熟料游离石灰降低了0.3-0.5%左右,煤耗降低了10%左右,窑小时产量也提高了:1号窑提高了5.75%;2号窑提高了2.0%.掺铜矿渣前后技术经济指标的对比见表1.  相似文献   

17.
在以粉煤灰为主的胶结料中掺入适量的矿渣能大幅度提高其强度,矿渣掺量以控制在15% ̄25%为宜;石灰对粉煤灰和矿渣都起激发剂的作用,在本试验范围内,石灰适宜掺量为15% ̄25%;粉磨细度与强度成正比关系,综合考虑产量、质量与电耗的关系,胶结料的比表面积控制在420 ̄450m2/kg。以粉煤灰、矿渣、石灰和石膏配置的胶结料,后期强度能大幅增长,凝结时间可调,抗大气稳定性较好。若采用蒸养技术,可得到3d抗压强度达45MPa以上,后期抗压强度能继续增长的硅酸盐制品。  相似文献   

18.
本文通过试验研究了大掺量粉煤灰-矿渣粉对普通干混砂浆的主要技术性能的影响。试验结果表明,粉煤灰-矿渣粉掺量在50%~80%时,砂浆和易性能够满足设计要求,但抗压强度和拉伸粘结强度随着复掺掺量的增加而降低;掺加胶凝材料总用量6%~8%的脱硫石膏,砂浆和易性变化不大,但可显著提高大掺量粉煤灰-矿渣粉干混砂浆的抗压强度及拉伸粘结强度,砂浆收缩率降低10%以上,抗碳化能力提高,体积更稳定。  相似文献   

19.
日本秩父水泥株式会社推出一种高强水泥的生产方法。该生产方法的技术特征是按水硬率2.2~2.4、硅率2.3~3、铝率1.5~2.5、C_3S含量在60%以上,C_3A与C_4AF固溶体含量(比率1~1.6)15%~20%,其余为C_3S的技术参数,制备熟料,磨至3500~4000 cm~2/g比表面积,加入细度为1000~3000cm~2/R的不溶性无水石膏,或再加入硫酸锌增强剂。由于熟料中掺入无水石膏和硫酸锌,在获得高后期抗压强度的同时,能大幅度提高早期抗压强度。它们的掺量分别为4%~9%和2%以下。如将C_3S  相似文献   

20.
混合材由于具有不同的性能特点,会对水泥的力学性能及流动性产生很大的影响。本文研究了不同掺量粉煤灰、石灰石和矿渣作混合材对水泥的流动性能和力学性能的影响,结果表明:水泥流动性能随着石灰石掺量的增加而提高;随着矿渣掺量的提高有所降低,但降低幅度不大;随着粉煤灰掺量的增加而显著降低。当混合材掺量低于15%时,掺加石灰石3天抗压强度略高于掺加矿渣和粉煤灰的水泥3d强度。当混合材掺量大于15%时,掺加石灰石水泥的3d抗压强度显著降低。在相同的混合材掺量情况下,掺加矿渣的水泥28d强度下降幅度最小,掺加石灰石的水泥28d抗压强度下降幅度最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号