首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
This work examines the hydrogen gas yield and trace pollutants partitioning in automobile shredder residue (ASR) catalytic gasification by fixed bed and fluidized bed gasifier with controlling at equilibrium ratio (ER) 0.2, temperature 900 °C, and 5%–15% prepared catalyst addition. Oyster shell (OS) is a valuable resource due to its higher calcium content that it could prepare as a catalyst for enhancing the hydrogen production in ASR gasification. In the case of the fixed bed gasifier experiments, the highest lower heating value (LHV) and syngas production were found at 900 °C and 10% OS catalyst addition. The maximum H2 and CO composition were 6.57% and 5.97%, respectively. The LHV of syngas was approximately 4.43 MJ/Nm3. The fluidized bed gasifier could provide a good ASR decomposition and heat transfer behavior. The syngas yield results indicated the maximum H2 and CO composition were 12.12% and 10.59%, respectively. It was obviously showed that the syngas production and energy conversion efficiency were enhanced by applying fluidized bed gasifier. The maximum produced gas LHV was 10.77 MJ/Nm3 as well as the cold gas efficiency (CGE) of produced gas was 71.62%. On the other hand, the volatile sulfur and chlorine speciation formed in ASR gasification were mainly partitioned in the solid and/or liquid phase. It implied that tested OS catalysts could inhibit the volatile sulfur and chlorine speciation emission in the produced gas as well as enhance the produced gas quality. In summary, this research could provide basic insight into enhanced syngas production and quality in ASR catalytic gasification using the prepared OS catalyst.  相似文献   

3.
In order to produce a clean producer gas, the air gasification of dried sewage sludge was conducted in a two-stage gasifier that consisted of a bubbling fluidized bed and a tar-cracking zone. The kind and amount of bed materials, the kind of additives in the upper-reactor, and the moisture content in the sewage sludge were selected as operating variables in order to investigate their effects on the development of the producer gas characteristics. In our experiments, the gasification of a dried sewage sludge sample containing 30 wt.% of moisture with a combination of calcined dolomite as the bed material and activated carbon in the tar-cracking zone removed the most tar and produced the highest hydrogen concentration. The total tar removal efficiency and the H2 content in the producer gas from the sample noted above reached 88.4% and 32.1 vol.%, respectively. The LHVs of all the producer gases were high with values above 7 MJ Nm−3.  相似文献   

4.
The gasification characteristics of the rice husk were studied in a cyclone gasifier using air as the gasifying medium to generate the fuel gas with available heating value and less tar content. The influence of equivalence ratio on temperature profiles, composition and low heating value of the produced gas, tar content, carbon conversion and cold gas efficiency was investigated. The equivalence ratios considered in this study were 0.20–0.32. The results show that the optimal equivalence ratio is 0.29 and the maximum temperature of gasification should be lower than 1000 °C. In order to optimize the performance of the cyclone gasifier, the main body of the gasifier was lengthened and air staged gasification was carried out. The low heating value of the produced gas, carbon conversion, cold gas efficiency and tar content are 4.72 MJ/Nm3, 57.5%, 37.3% and 1.85 g/Nm3, respectively.  相似文献   

5.
《能源学会志》2020,93(1):99-111
This paper reports gasification of coal/biomass blends in a pilot scale (50 kWe) air-blown circulating fluidized bed gasifier. Yardsticks for gasification performance are net yield, LHV and composition and tar content of producer gas, cold gas efficiency (CGE) and carbon conversion efficiency (CCE). Net LHV decreased with increasing equivalence ratio (ER) whereas CCE and CGE increased. Max gas yield (1.91 Nm3/kg) and least tar yield (5.61 g/kg of dry fuel) was obtained for coal biomass composition of 60:40 wt% at 800 °C. Catalytic effect of alkali and alkaline earth metals in biomass enhanced char and tar conversion for coal/biomass blend of 60:40 wt% at ER = 0.29, with CGE and CCE of 44% and 84%, respectively. Gasification of 60:40 wt% coal/biomass blend with dolomite (10 wt%, in-bed) gave higher gas yield (2.11 Nm3/kg) and H2 content (12.63 vol%) of producer gas with reduced tar content (4.3 g/kg dry fuel).  相似文献   

6.
Energy utilization from biomass resources has started to attract public attention as a method to reduce CO2 emissions. In this study, the characteristics of syngas production from biomass gasification were investigated in a downdraft gasifier that was combined with a small gas engine system for power generation. Syngas temperatures from the gasifier were maintained at a level of 700-1000 °C. When the air ratio for gasification was 0.3-0.35, the low heating value of syngas was 1100-1200 kcal Nm−3 and the cold gas efficiency 69-72%. Tar concentration in raw syngas was around 3.9-4.4 g Nm−3. Syngas combustion in the gas engine after purification showed that HC concentration was below 200 ppm, and NOx concentration was below 40 ppm in the exhaust gas.  相似文献   

7.
This study investigates the comparison of various mineral catalysts on the enhancement of energy yield efficiency with low temperature catalytic gasification of disposable chopsticks. The experiments were carried out in a fluidized bed reactor by controlling the temperature and keeping it within the range of 600 °C–800 °C. The mineral catalysts, such as aluminum silicate, zeolite and calcium oxide (CaO) were used as the experimental catalysts for enhancing energy yield in this research. According to the experimental results, the gasification temperature is a critical factor for improving the gas yield and quality. In general, a higher temperature provides more favorable conditions for thermal cracking and enhances the gas yield and quality. The hydrogen content produced from the tested biomass gasification by various catalysts slightly increased from 11.77% to 14.57%. Furthermore, the lower heating value of synthesis gas increased from 9.28 MJ/Nm3 to 9.62 MJ/Nm3, when the fluidized bed reactor temperature operated at 600 °C and the tested catalysts addition. That is, the catalytic gasification has good energy yield performance for enhancing higher energy content of synthesis gas in a lower-temperature catalytic fluidized bed reactor. Compared with the hydrogen production efficiency, the addition of a calcium based catalyst can reduce bed agglomeration tendency, but it also improves the energy yield in this research.  相似文献   

8.
This study aims to investigate the gasification potential of olive pomace with using different fixed-bed gasifier systems. Olive pomace as a dried form was supplied from a chemical industry plant working on olive oil soap, located in Izmir, Türkiye. After a complete characterization of olive pomace, gasification experiments by using fixed bed reactor systems were done at three different gasifier temperatures as 700, 800 and 900 °C. As a gasification agent, dry air was used with four different flowrates (0.4, 0.2, 0.1, 0.05 L/min) while pure oxygen experiments were carried out with a flow rate of 0.01 L/min. Syngas with H2 content of 48% and 45% (volumetric) were obtained in updraft and downdraft gasifiers, respectively, by using dried air as a gasifying agent. Heating value of syngas was around 12.4 MJ/Nm3. In the pure oxygen atmosphere, H2 contents of the syngas were measured as 53% and 39%vol. In the updraft and downdraft gasifiers. This paper presents the research results on the olive pomace gasification study as a part of a large-scale research project and discuss them in the context of hydrogen production from the fixed bed reactors.  相似文献   

9.
The dual-stage ignition biomass downdraft gasifier is an enormous tar reduction technology as against a single-stage ignition biomass gasification. Exergetic analysis of the system guides toward a possible performance enhancement. In dual-stage gasification, around 67.76% of input exergy is destructed in the several components, while 9.16% is obtained as a useful exergy output and 24.34% is found to be as a useful energy output there. The entire unit was assessed with a progressively rising electric load from 15.24 kW to 38.86 kW. The enhanced producer gas quality comes from 57% combustible gas with a higher heating value of 6.524 MJ/Nm3 and tar content of 7 mg/Nm3 after the paper filter, whereas the biomass consumption rate is 58 kg/h at the greatest load with the grate temperature of 1310–1370 °C. The samples of exhaust gas emissions are obtained environmentally favorable. The results even described that the dual-stage ignition biomass downdraft gasifier has significantly greater energetic and exergetic efficiency as compared to the single-stage gasifier.  相似文献   

10.
Hydrogen is the core source to both refinery and synthetic plant of chemicals. Refinery consumes high purity hydrogen while synthetic plant of chemicals needs syngas consists of hydrogen and carbon oxides. As main hydrogen production technologies, industrial coal gasification and steam methane reforming based pathways generate H2, CO and CO2, which is actually the mixture of hydrogen and carbon oxides. Hence, the gases demand of refinery and synthetic plant of chemicals and their supply from hydrogen production can form hybrid hydrogen networks. On the basis of complementary reuse, this paper firstly proposes integration of hybrid hydrogen network for refinery and synthetic plant of chemicals. Superstructures of individual and hybrid hydrogen networks are employed as problem illustration and corresponding linear programming (LP) mathematical models are formulated. Practical refinery and synthetic plant of chemicals cases are employed to demonstrate its application. Compared with individual networks, the natural gas conservation case can recover 8660.4 Nm3·h-1 hydrogen in purge gas, reduce 1386.6 Nm3·h-1 CO2 emission, equaling to reduction of 278.11 kmol·h-1 natural gas feedstock and 14.8% of total gas production load; the coal conservation case can even waive the total coal consumption and extra 104.1 kmol·h-1 natural gas, recover 8660.4 Nm3·h-1 hydrogen in purge gas, reduce 5255.8 Nm3·h-1 of CO2 emission and decrease 21.2% of the total gas production load. Furthermore, economic evaluation is also placed to account for the economic advantage of hybrid network.  相似文献   

11.
Corn stover, distiller grains and cattle manure were characterized to evaluate their acceptability for thermochemical conversion. The energy densities of ground corn stover, distiller grains and cattle manure after totally drying were 3402, 11,813 and 10,374 MJ/m3, compared to 37,125 MJ/m3 for coal. The contents of volatiles in corn stover, distiller grains and cattle manure were 77.4, 82.6 and 82.8%, respectively, on a dry and ash-free basis compared to 43.6% for coal. About 90% of the volatiles in corn stover, distiller grains and cattle manure were released at pyrolysis temperatures of 497, 573 and 565 °C, respectively. The combustion of corn stover, distiller grains and cattle manure were completed at 620, 840 and 560 °C, respectively. The heat values of the biomass and air mixture for stoichiometric combustion were 2.64, 2.75 and 1.77 MJ/kg for dried corn stover, distiller grains and cattle manure, respectively, as compared to 2.69 MJ/kg for coal. Combustion of 1 kg of dry corn stover, distiller grains and cattle manure generated 5.33, 6.20 and 5.66 Nm3 of flue gas, respectively, compared to 8.34 Nm3 for coal. Simulation showed that gasification of 1 kg of dried corn stover, distiller grains and cattle manure at 850 °C and ER of 0.3 generated 2.02, 2.37 and 1.44 Nm3 dry syngas at a heating value of about 4.5 MJ/Nm3, compared to 3.52 Nm3 at 5.8 MJ/Nm3 for coal. The molecular ratio of H2 to CO in the biomass-derived syngas was close to 1.0, compared to about 0.5 for the coal-derived syngas.  相似文献   

12.
The main objective of this paper is to study the effect of design and operating parameters, mainly reactor geometry, equivalence ratio and biomass feeding rate, on the performance of the gasification process of biomass in a three air stage continuous fixed bed downdraft reactor. The gasification of corn straw was carried out in the gasifier under atmospheric pressure, using air as gasifying agent. The results demonstrated that due to the three stage of air supply, a high and uniform temperature was achieved in the oxidation and reduction zones for better tar cracking. The designing of both the air supply system and rotating grate avoided bridging and channeling. The gas composition and tar yield were affected by the parameters including equivalence ratio (ER) and biomass feeding rate. When biomass feeding rate was 7.5 kg/h and ER was 0.25–0.27, the product gas of the gasifier attained a good condition with lower heating value (LHV) about 5400 kJ/m3 and cold gas efficiency about 65%. An increase in equivalence ratio led to higher temperature which in turn resulted in lower tar yield which was only 0.52 g/Nm3 at ER = 0.32. Increasing biomass feeding rate led to higher biomass consumption rate and process temperature. However, excessively high feeding rate was unbeneficial for biomass gasification cracking and reforming reactions, which led to a decrease in H2 and CO concentrations and an increase in tar yield. When ER was 0.27, with an increase of biomass feeding rate from 5.8 kg/h to 9.3 kg/h, the lower heating value decreased from 5455.5 kJ/Nm3 to 5253.2 kJ/Nm3 and tar yield increased from 0.82 g/Nm3 to 2.78 g/Nm3.  相似文献   

13.
This study aimed to investigate the gasification potential of municipal green waste in different fixed-bed gasifier configurations as updraft and downdraft. Both reactor systems were constructed from stainless-steel with a cyclone separator to increase synthesis gas yield and reduce tar production. Green waste collected from parks and gardens by Manisa Metropolitan Municipality, Turkey, was used in the experiments. After full-characterization of green waste, gasification experiments were performed above 700 °C to produce syngas with more than 40% (volumetric) H2 and heating value around 12.54 MJ/Nm3. Dry air (DA) and pure oxygen (PO) were used as gasification agents. DA was applied with the flow-rates ranged between 0.4 and 0.05 L/min while the flow-rate of PO was 0.01 L/min. The maximum H2 production as 45 vol% was obtained in downdraft reactor while it was about 51 vol% in updraft system. CH4 production was obtained as higher value (app. 19 vol%) in downdraft reactor than that (13 vol%) in the updraft one. In the experiments with DA above 700 °C, the H2/CO ratio varied between 1 and 3, and in the experiments with PO, it increased up to a maximum value of 4. The study has found a suitable set of gasification process parameters for two reactor systems. Therefore, the findings have been compared and discussed in detail.  相似文献   

14.
This work presents an experimental study of the gasification of a wood biomass in a moving bed downdraft reactor with two-air supply stages. This configuration is considered as primary method to improve the quality of the producer gas, regarding its tar reduction. By varying the air flow fed to the gasifier and the distribution of gasification air between stages (AR), being the controllable and measurable variables for this type of gasifiers, measuring the CO, CH4 and H2 gas concentrations and through a mass and energy balance, the gas yield and its power, the cold efficiency of the process and the equivalence ratio (ER), as well as other performance variables were calculated. The gasifier produces a combustible gas with a CO, CH4 and H2 concentrations of 19.04, 0.89 and 16.78% v respectively, at a total flow of air of 20 Nm3 h−1 and an AR of 80%. For these conditions, the low heating value of the gas was 4539 kJ Nm−3. Results from the calculation model show a useful gas power and cold efficiency around 40 kW and 68%, respectively. The resulting ER under the referred operation condition is around 0.40. The results suggested a considerable effect of the secondary stage over the reduction of the CH4 concentration which is associated with the decreases of the tar content in the produced gas. Under these conditions the biomass devolatilization in the pyrolysis zone gives much lighter compounds which are more easily cracked when the gas stream passes through the combustion zone.  相似文献   

15.
This paper investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen rich gas production using pilot scale fluidized bed gasifier under atmospheric condition. The effect of temperature (600–750 °C) and steam to biomass ratio (1.5–2.5 wt/wt) on hydrogen (H2) yield, product gas composition, gas yield, char yield, gasification and carbon conversion efficiency, and lower heating values are studied. The results show that H2 hydrogen composition of 82.11 vol% is achieved at temperature of 675 °C, and negligible carbon dioxide (CO2) composition is observed at 600 °C and 675 °C at a constant steam to biomass ratio of 2.0 wt/wt. In addition, maximum H2 yield of 150 g/kg biomass is observed at 750 °C and at steam to biomass ratio of 2.0 wt/wt. A good heating value of product gas which is 14.37 MJ/Nm3 is obtained at 600 °C and steam to biomass ratio of 2.0 wt/wt. Temperature and steam to biomass ratio both enhanced H2 yield but temperature is the most influential factor. Utilization of adsorbent and catalyst produced higher H2 composition, yield and gas heating values as demonstrated by biomass catalytic steam gasification and steam gasification with in situ CO2 adsorbent.  相似文献   

16.
《能源学会志》2019,92(4):1005-1013
A new process integrating a circulating fluidized bed (CFB) reactor and an entrained bed reactor was proposed for gasification of preheated coal. The CFB reactor as a preheater was successfully used in clean coal combustion. In this study, gasification of preheated coal was tested in a bench-scale test rig, which consisted of a CFB preheater and a down flow bed (DFB) gasifier. The effects of operating parameters of the preheater and gasifier were revealed via thermodynamic equilibrium calculations. A stable preheating process was obtained in the CFB preheater at the O2/C molar ratio of 0.31 and higher gasification reactivity was gained in preheated char owing to the improvement in intrinsic reactivity, specific surface area and total pore volume. Effective gasification of preheated char was achieved in the DFB gasifier at 1100 °C and the total O2/C molar ratio of 0.67, meanwhile the CO + H2 yield and carbon conversion increased. Thermodynamic equilibrium calculations revealed when the gasification reaction rates varied little above 1100 °C and the same carbon conversion was achieve in gasifier, lowering the temperature would lead to an increase in cold gas efficiency and a decrease in O2 demand.  相似文献   

17.
Pongamia residue (shells) is the byproduct from the biodiesel processing industry, which is a lignocellulosic biomass material. It is not suitable as feedstock in downdraft wood gasifier due to low bulk density (146 kg/m3) of shells as compared to wood (more than 350 kg/m3). Pelletization and gasification of pelletized shells was carried out in the present work. The heat transfer analysis in pellets of 17 mm and 11.5 mm was also carried out to evaluate thermal properties of this biomass. Shell pellets of 17 mm and 11.5 mm diameter and length in the range of 10–60 mm were gasified in a 20 kWe downdraft wood gasifier. The complete gasification of pellets with 17 mm diameter could not be achieved because of less porosity and presence of larger thermal gradient within the pellets. The gasification efficiency was 73% for 17 mm diameter pellets which is lower than that of 11.5 mm diameter pellets which was 95%. The calorific value of producer gas generated from smaller diameter pellets was higher (4.66 MJ/N m3) as compared to larger diameter pellets (3.98 MJ/N m3). Tar formation during gasification of smaller diameter pellets was low as compared to larger diameter pellets.  相似文献   

18.
This study had compared raw biomass and pre-treated biomass co-gasified with coal with the aim of investigating the reliability of pre-treated biomass for enhancing gasification performance. Sawdust (SD) and wood pellet (palletisation form of sawdust - WP) and blends of these two feedstocks with sub-bituminous coal (CL), were gasified in an air atmosphere using an external heated fixed-bed downdraft gasifier system. Response surface methodology (RSM) incorporating the central composite design (CCD) was applied to assist the comparison of all operating variables. The three independent variables were investigated within a specific range of coal blending ratios from 25% to 75%, gasification temperature from 650 °C to 850 °C and equivalence ratio from 0.20 to 0.30 against the dependent variables, namely the H2/CO ratio and higher heating value of the syngas (HHVsyngas). The results revealed the H2/CO ratio and a higher heating value of the syngas of more than 1.585 and 6.072 MJ/Nm3, respectively. Findings also showed that the H2/CO ratio in the syngas from CL/WP possessed a higher value than the CL/SD. In contrast, CL/SD possessed a higher heating value for syngas with about 1% difference compared to the CL/WP. Therefore, co-gasified coal with wood pellets could potentially be a substitute for sawdust.  相似文献   

19.
Gasification is a thermochemical conversion of carbonaceous biomass into the producer gas. Gasification of lignite, wood, sawdust briquette and their mixtures are investigated on a 10 kWe laboratory scale downdraft gasifier at atmospheric pressure. The air is used as a gasifying medium. The gasifier was operated on different particle sizes of lignite and lignite-wood ratio; 22–25 mm lignite particle size and lignite – wood ratio (70:30, w/w) were found to be optimum to overcome clinker formation and higher Cold Gas Efficiency (CGE). To avoid unwanted maintenance, it is essential to diminish the producer gas pollutants such as tar and particulate matter (PM) before injecting the producer gas into a turbine or a gas engine. A setup was developed to measure tar and PM from the producer gas. The gasifier performance was evaluated on various parameters such as tar, PM, fuel consumption, gas yield, gas composition, gas calorific value and CGE for all selected feedstock. The tar in the producer gas was found in the range of 201.30 mg Nm?3 to 617.80 mg Nm?3 whereas PM was found in the range of 36.76 mg Nm?3 to 68.35 mg Nm?3. CGE and gas calorific value were observed in the range between 64.99% and 71.62% and 4.64 MJ Nm?3 to 5.29 MJ Nm?3, respectively. Specific fuel consumption (SFC) was obtained in the range of 1.52 kg kWh?1 to 1.84 kg kWh?1. CGE with lignite – wood or sawdust briquette ratio (70:30, w/w) is found maximum whereas tar and PM are found minimum with wood and sawdust briquette feedstock in the present study.  相似文献   

20.
Biomass gasification is an important method to obtain renewable hydrogen. However, this technology still stagnates in a laboratory scale because of its high-energy consumption. In order to get maximum hydrogen yield and decrease energy consumption, this study applies a self-heated downdraft gasifier as the reactor and uses char as the catalyst to study the characteristics of hydrogen production from biomass gasification. Air and oxygen/steam are utilized as the gasifying agents. The experimental results indicate that compared to biomass air gasification, biomass oxygen/steam gasification improves hydrogen yield depending on the volume of downdraft gasifier, and also nearly doubles the heating value of fuel gas. The maximum lower heating value of fuel gas reaches 11.11 MJ/N m3 for biomass oxygen/steam gasification. Over the ranges of operating conditions examined, the maximum hydrogen yield reaches 45.16 g H2/kg biomass. For biomass oxygen/steam gasification, the content of H2 and CO reaches 63.27–72.56%, while the content of H2 and CO gets to 52.19–63.31% for biomass air gasification. The ratio of H2/CO for biomass oxygen/steam gasification reaches 0.70–0.90, which is lower than that of biomass air gasification, 1.06–1.27. The experimental and comparison results prove that biomass oxygen/steam gasification in a downdraft gasifier is an effective, relatively low energy consumption technology for hydrogen-rich gas production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号