首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catalytic methane decomposition (CMD) has a good potential to develop environmentally friendly hydrogen economy, and the catalyst plays a vital role on its applications. In this work, a novel strategy was proposed to fabricate efficient and effective nickel/carbon catalysts for CMD by introducing some additional nickel and K2CO3 into partial steam gasification of coal char. The gasification process is conducive to in situ synthesize nickel crystallites with high reduction degree (the value of Ni0/(Ni0+Ni2+) up to 76%–81%) on the catalyst surface, and it is competent for co-generation of hydrogen-rich gas and nickel/carbon hybrids with large surface areas (around 86–149 m2/g after washing off the residual potassium salts). The nickel/carbon hybrid as the gasification residue could serve as the catalyst for CMD, showing high and stable methane conversion (up to 80%–87%) at 850 °C. It is observed that co-production of hydrogen and filamentous carbons can be achieved in the 600-min process of CMD, thanks to the positive effect of K2CO3 on formation and activity improvement of the nickel/carbon catalyst.  相似文献   

2.
Supercritical water gasification (SCWG) of coal is a promising technology for clean coal utilization. In this paper, hydrogen production by catalytic gasification of coal in supercritical water (SCW) was carried out in a micro batch reactor with various alkaline catalysts: Na2CO3, K2CO3, Ca(OH)2, NaOH and KOH. H2 yield in relation to the alkaline catalyst was in the following order: K2CO3 ≈ KOH ≈ NaOH > Na2CO3 > Ca(OH)2. Then, hydrogen production by catalytic gasification of coal with K2CO3 was systematically investigated in supercritical water. The influences of the main operating parameters including feed concentration, catalyst loading and reaction temperature on the gasification characteristics of coal were investigated. The experimental results showed that carbon gasification efficiency (CE, mass of carbon in gaseous product/mass of carbon in coal × 100%) and H2 yield increased with increasing catalyst loading, increasing temperature, and decreasing coal concentration. In particular, coal was completely gasified at 700 °C when the weight ratio of K2CO3 to coal was 1, and it was encouraging that raw coal was converted into white residual. At last, a reaction mechanism based on oxygen transfer and intermediate hybrid mechanism was proposed to understand coal gasification in supercritical water.  相似文献   

3.
Sorption enhanced gasification (SEG) of biomass with steam was investigated in a fixed-bed reactor to elucidate the effects of temperature, catalyst type and loading on hydrogen production. K2CO3, CH3COOK and KCl were chosen as potassium catalyst precursors to improve carbon conversion efficiency in gasification process. It was indicated that from 600 °C to 700 °C, the addition of K2CO3 or CH3COOK catalyzed the gasification for hydrogen production, and hydrogen yield and carbon conversion increased with increasing catalyst loadings of K2CO3 or CH3COOK. However, the hydrogen yield and carbon conversion decreased as the amount of KCl was increased due to inhibition of KCl on gasification. The maximum carbon conversion efficiency (88.0%) was obtained at 700 °C corresponding to hydrogen yield of 73.0 vol.% when K2CO3 of 20 wt.% K loading was used. In particular, discrepant catalytic performance was observed between K2CO3 and CH3COOK at different temperatures and the corresponding mechanism was also discussed.  相似文献   

4.
Catalytic supercritical water gasification (SCWG) for H2 production is a hopeful way of coal conversion to replace the traditional coal utilization mode. At present, the detailed catalytic mechanism in the process remains unknown. Herein, a comprehensive catalytic SCWG mechanism of coal is proposed by establishing a novel catalytic kinetic model. It shows that catalysts (K2CO3) break up the coal matrix by a cyclic redox reaction to produce plenty of mesopores, accelerating steam reforming of fixed carbon and coal pyrolysis. Water-gas shift reaction is facilitated by K2CO3 via formation of formate, which then promotes steam reforming of CH4 at high temperature (≥700 °C) due to the decreasing CO. The proposed mechanism provides important insights in catalytic SCWG process of coal.  相似文献   

5.
The synergetic effect in reactivity and gas yield on the various ratio of CO2/steam mixtures was investigated. The isothermal gasification was conducted at three different temperatures. The synergy effect was evaluated on the ratio of CO2/steam mixtures and reaction temperatures. In order to analyze the synergy quantitively, two reaction indexes were calculated from carbon conversion. The effect of natural minerals like Dolomite and Kaolin was investigated as well. The influence of synergy was varied upon the ratio of CO2/steam mixtures and the optimal synergy was observed when the ratio of CO2/steam mixtures was 1:2. The best synergy in reactivity and gas yield was shown at 800 °C and at 900 °C, respectively. By adding Dolomite, the synergetic effect in both reactivity and H2 yield was promoted at 800 °C. Conclusively, the ratio of CO2/steam mixtures and Dolomite played an important role to facilitate the synergy in the coal gasification.  相似文献   

6.
Chemical looping combustion (CLC) is an innovative combustion technology with inherent separation of CO2 without energy penalty. When solid fuel is applied in CLC, the gasification of solid fuel is the rate-limiting process for in situ gasification of coal and reduction of oxygen carrier. The K2CO3-decorated iron ore after calcinations was used as oxygen carrier in CLC of anthracite coal, and potassium ferrites were formed during the calcinations process. The experiments were performed in a laboratory fluidized bed reactor with steam as a gasification medium. Effects of reaction temperature, K2CO3 loading in iron ore and cycle on the gas concentration, carbon conversion, gasification rate and yields of carbonaceous gases were investigated. The carbon gasification was accelerated during the fast reaction stage between 860 °C and 920 °C, and the water–gas shift reaction was significantly enhanced in a wider temperature range of 800 °C to 920 °C. With the K2CO3 loading in iron ore increasing from 0% to 20% at 920 °C, the carbon conversion was accelerated in the fast reaction stage, and the fast reaction stage became shorter. The yield of CO2 reached a maximum of 94.4% and the yield of CO reached a minimum of 3.4% when use the iron ore loaded with 6% K2CO3. SEM analysis showed that the K2CO3-decorating in iron ore would cause a sintering on the particle surface of oxygen carrier, and the K2CO3 loading in iron ore should not be too high. Cycle experiments indicate that the K2CO3-decorated iron ore has a relative stable catalytic effect in the CLC process.  相似文献   

7.
The kinetics of the coal to hydrogen conversion can be significantly enhanced by introducing catalysts. The catalysts are, however, commonly deactivated by irreversible interaction with mineral matters in coal. This work addresses hydrogen production via steam gasification of ash free coals. Following the production of ash free coals (AFCs) derived from various raw coals (brown, bituminous, and coking coal), fixed-bed steam gasification of the AFCs was performed as a function of temperature and which was compared with one another and also with that of the matching raw coals. In the absence of a catalyst, AFCs produced from different parent coals exhibited similarly low gasification reactivity, comparable to a high rank coal (coking coal) at 700 °C. As expected, the reaction became faster with increasing temperature in the range, 700–900 °C. The steam gasification of AFCs was highly activated by K2CO3 above 700 °C. It was very likely that water–gas shift reaction associated with the gasification of AFCs was also catalyzed.  相似文献   

8.
The present study aims at exploring a concept which can convert coal-bed methane (containing methane, air and carbon dioxide) to synthesis gas. Without pre-separation and purification, the low-cost synthesis gas can be produced by coupling air partial oxidation and CO2 reforming of coal bed methane. For this purpose, the co-precipitated Ni-Mg-ZrO2 catalyst was prepared. It was found that the co-precipitated Ni-Mg-ZrO2 catalyst exhibited the best activity and stability at 800 °C during the reaction. The conversions of CH4 and CO2 maintained at 94.8% and 82.1% respectively after 100 h of reaction. The effect of reaction temperature was investigated. The H2/CO ratio in the product was mainly dependent on the feed gas composition. By changing O2/CO2 ratio of the feed gases, the H2/CO ratio in the off-gas varied between 0.8 and 1.8. The experimental results showed that the high thermal stability and basic properties of the catalyst, and the strong metal-support interaction played important roles in improving the activity and stability of the catalyst. With the combined reactions and the Ni-Mg-ZrO2 catalyst, the coal bed methane could be converted to synthesis gas, which can meet the need of the subsequent synthesis processes.  相似文献   

9.
《能源学会志》2020,93(5):1790-1797
Coal-direct CLHG is a novel hydrogen production technology with inherent CO2 capture. Potassium-decorated Fe2O3/Al2O3 oxygen carrier (OC) has been proved to be a potential OC for the technology. However, the ash in the coal could influence the OC performance. In this work, the effect of ash addition on the reactivity, the morphology structure and phase composition of OC, and the potassium migration in the reduction stage were investigated. Furthermore, the effect of OC on the ash fusion temperature was discussed. Results indicated that the OC reactivity had no significant change when SM (Shenmu) ash addition was less than 1% in the reduction stage and decreased when the addition was more than 2%. In the steam oxidation stage, the H2 yield varied between 5.80–5.57 mmol/g when the SM ash addition was less than 10% and decreased to 4.31 mmol/g when the addition was 40%. FeO could react with SiO2 deriving from coal ash to form Fe2SiO4, which could cause the loss of Fe and the OC sintering; K2CO3 could react with silicon-aluminum minerals which could cause the potassium loss. The ash with high CaO content had a less negative effect on the OC reactivity. With the increase of SM ash addition, the potassium in OC decreased, the potassium in char increased and the volatile potassium decreased after the reduction stage. After the OC addition, the deformation temperature decreased from 1242 °C to 1114 °C in the weak reduction atmosphere while increased from 1162 °C to 1300 °C in the air atmosphere.  相似文献   

10.
In this work, CO2 capture and H2 production during the steam gasification of coal integrated with CO2 capture sorbent were investigated using a horizontal fixed bed reactor at atmospheric pressure. Four different temperatures (650, 675, 700, and 750 °C) and three sorbent-to-carbon ratios ([Ca]/[C] = 0, 1, 2) were studied. In the absence of sorbent, the maximum molar fraction of H2 (64.6%) and conversion of coal (71.3%) were exhibited at the highest temperature (750 °C). The experimental results verified that the presence of sorbent in the steam gasification of coal enhanced the molar fraction of H2 to more than 80%, with almost all CO2 was fixed into the sorbent structure, and carbon monoxide (CO) was converted to H2 and CO2 through the water gas shift reaction. The steam gasification of coal integrated with CO2 capture largely depended on the reaction temperature and exhibited optimal conditions at 675 °C. The maximum molar fraction of H2 (81.7%) and minimum CO2 concentration (almost 0%) were obtained at 675 °C and a sorbent-to-carbon ratio of 2.  相似文献   

11.
The technology of supercritical water gasification (SCWG) of coal has a great prospect because it converts coal into hydrogen-rich gas products efficiently and cleanly. However, there are bottlenecks affecting the complete gasification of coal in supercritical water (SCW) without catalyst under moderate conditions. This work is to explore the restricted factor for complete gasification of coal in SCW by investigating the conversion mechanism. The conversion mechanism of SCWG of coal with and without K2CO3 is proposed. Polycyclic aromatic hydrocarbons (PAHs) with graphite phase structures are formed by the condensation of aromatic structures at 550–750 °C. It is the restricted factor due to its characteristic of difficulty to be gasified. There is no condensation of aromatic structures in the process of SCWG of coal with K2CO3, which effectively inhibited the formation of PAHs with graphite phase structures. K2CO3 dramatically promoted the SCWG of coal, leading to carbon gasification efficiency (CE) reaching 98.43%.  相似文献   

12.
Coal is one of the energy resources useful for solving the energy crisis. It has met nearly half of the rise in global energy demand over the last decade, growing even faster than total renewables. Catalytic coal gasification is useful technology in SNG (Substitute Natural Gas) and IGFC (Integrated Gasification Fuel Cell) plants that use coal. The Catalytic Coal Gasification Process developed by Exxon in 1978 was simulated with Aspen Plus in the fixed bed type reactor. The purpose of this study is to derive kinetic parameters from experimental results in literature and compare them using the catalytic coal gasification model in Aspen Plus. Carbon–Steam reaction is an important reaction in catalytic gasification reaction since steam is only an oxidant feeding in the system. Mainly, alkali metal gasification catalysts like potassium carbonate increase the rate of steam gasification. The kinetic values calculated from the experimental data are 0.30126, 0.09204, and 0.076995 (cc mol−1 h−1). Obtained kinetic value kf determines ko and E values compared with Arrhenius equation to input Aspen Plus simulation. Another major focus is on low-rank coal because upgrading low-rank coal is very useful for energy efficiency and environmental aspects. Upgrading coal means removing moisture from low-rank coal. Boiler efficiency is decreased because a lot of moisture content and CO2 emissions are increased. Carbon dioxide and the flue gas emissions for the same energy level can be reduced by about 30%. Low-rank coal will be increased energy requirement for removing carbon dioxide. The investigation of the drying characteristics of low-rank coal is performed in our laboratory. The experimental results based on the drying characteristics are reflected in this simulation process.  相似文献   

13.
This paper presents an experimental investigation for an improved process of sorption-enhanced steam reforming of methane in an admixture fixed bed reactor. A highly active Rh/CeαZr1−αO2 catalyst and K2CO3-promoted hydrotalcite are utilized as novel catalyst/sorbent materials for an efficient H2 production with in situ CO2 capture at low temperature (450–500 °C). The process performance is demonstrated in response to temperature (400–500 °C), pressure (1.5–6.0 bar), and steam/carbon ratio (3–6). Thus, direct production of high H2 purity and fuel conversion >99% is achieved with low level of carbon oxides impurities (<100 ppm). A maximum enhancement of 162% in CH4 conversion is obtained at a temperature of 450 °C and a pressure of 6 bar using a steam/carbon molar ratio of 4. The high catalyst activity of Rh yields an enhanced CH4 conversion using much lower catalyst/sorbent bed composition and much smaller reactor size than Ni-based sorption enhanced processes at low temperature. The cyclic stability of the process is demonstrated over a series of 30 sorption/desorption cycles. The sorbent exhibited a stable performance in terms of the CO2 working sorption capacity and the corresponding CH4 conversion obtained in the sorption enhanced process. The process showed a good thermal stability in the temperature range of 400–500 °C. The effects of the sorbent regeneration time and the purge stream humidity on the achieved CH4 conversion are also studied. Using steam purge is beneficial for high degree of CO2 recovery from the sorbent.  相似文献   

14.
Small-molecule gas sorption and diffusion in coal: Molecular simulation   总被引:1,自引:0,他引:1  
Injections of carbon dioxide (CO2) into unmineable coalbeds can both enhance coalbed methane recovery (ECBM), a high-efficiency energy, and realize underground storage of CO2. In these processes, the diffusion and sorption of methane (CH4) and carbon dioxide are key dominant processes. In this study, the diffusion and sorption behavior of CH4 and CO2 in coal are investigated and compared based on molecular simulation. The calculated diffusion coefficient of CO2 was in the order of 10−9 m2/s, which is reasonably close to the experimental result. The sorption isotherms were obtained using the grand canonical Monte Carlo method. Coal tended to adsorb more CO2 than CH4 at a given temperature and pressure. The sorption heat of CO2 was larger than that of CH4 (7.9 and 5.8 kcal/mol respectively), accounting for the fact that the CH4 adsorbed in the coal seam could be replaced by CO2. This presents an alternative method for directly studying the interactions between coal macromolecule and small-molecule gases under various external environments.  相似文献   

15.
Catalyst deactivation and regeneration during CO2 reforming of bio-oil were researched in this paper. The results of XRD, TG and SEM analyses showed that the catalyst deactivation was a combination of carbon deposition and sintering. There were amorphous carbon and filamentous carbon on the catalyst surface, but amorphous carbon was the main carbon product, which was the main reason for the catalyst deactivation. The activity and stability of steam regeneration catalyst is superior to that of CO2 and air regeneration catalyst, but steam regeneration process will consume much quantity of steam, which can be increased production cost. Air regeneration method is easy to sinter the center of catalyst. CO2 regeneration process not only produces useful gases (C + CO2 = 2CO), but also makes good use of greenhouse gases, which has an industrial application prospect. However, with the cycle of catalyst increasing, the activity and stability catalyst will decrease gradually during the CO2 reforming process.  相似文献   

16.
Fe-based catalysts doped with Mo were prepared and tested in the catalytic decomposition of methane (CDM), which aims for the co-production of CO2-free hydrogen and carbon filaments (CFs). Catalysts performance were tested in a thermobalance operating either at isothermal or temperature programmed mode by monitoring the weight changes with time or temperature, respectively, as a result of CF growth on the metal particles. Maximum performance of Fe–Mo catalysts was found at the temperature range of 700–900 °C. The addition of Mo as dopant resulted in an increase in the rate and amount of deposited carbon, reaching an optimum in the range 1.7–5.1% (mol) of Mo for Fe–Mo/Al2O3 catalysts, whereas for Fe–Mo/MgO catalyst an optimum at 5.1% Mo loading was obtained. XRD study revealed the effect of the Mo addition on the Fe2O3/Fe crystal domain size in the fresh and reduced catalysts. Tubular carbon nanostructures with high structural order were obtained using Fe–Mo catalysts, mainly as multiwall carbon nanotubes (MWCNTs) and bamboo carbon nanotubes. Fe–Mo catalysts showing best results in thermobalance were tested in a rotary bed reactor leading to high conversions of methane (70%) and formation of MWCNTs (5.3 g/h).  相似文献   

17.
《Energy》1998,23(6):475-488
Coal pyrolysis and gasification reactions were carried out in a fluidized-bed reactor (0.1 m i.d. by 1.6 m height) over a temperature range from 1023 to 1173 K at atmospheric pressure. The overall gasification kinetics for the steam–char and oxygen–char reactions were determined in a thermobalance reactor. The compositions of the product gases from the coal-gasification reactions are 30–40% H2, 23–28% CO, 27–35% CO2 and 6–9% CH4 with heating values of 2000–3750 kJ m−3. The heating value increases with increasing temperature and steam/coal ratio but decreases with increasing air/coal ratio. Our kinetic data derived from the two-phase theory on coal gasification in a thermobalance reactor and coal pyrolysis in a fluidized bed may be used to predict the product-gas compositions.  相似文献   

18.
Calcium precursor and surfactant addition on properties of synthetic alumina-containing CaO-based for CO2 capture and for sorption-enhanced steam methane reforming process (SE-SMR) were investigated. Results showed that the sorbent derived from calcium d-gluconic acid (CG-AN) offered CO2 sorption capacity of 0.38 g CO2/g sorbent, which is greater than 0.17 g CO2/g sorbent of the sorbent derived from calcium nitrate (CN-AN). Addition of CTAB surfactant during synthesis was found to enhance CO2 sorption capacity for CG-AN but not for CN-AN sorbents. Stability tests of the modified sorbents for 10 cycles showed that CG-AN-CTAB provided higher CO2 sorption capacity than CN-AN-CTAB for each corresponding cycle. Incorporation of CG-AN with Ni catalyst (Ni-CG-AN) using wet-mixing technique offered the longest pre-breakthrough period of 60 min for average maximum H2 purity of 88% at 600 °C and a steam/methane molar ratio of 3.  相似文献   

19.
The premise of this research is to find whether methane (CH4) and carbon dioxide (CO2) produced during biomass gasification can be converted to carbon monoxide (CO) and hydrogen (H2). Simultaneous steam and dry reforming was conducted by selecting three process parameters (temperature, CO2:CH4, and CH4:steam ratios). Experiments were carried out at three levels of temperature (800 °C, 825 °C and 850 °C), CO2:CH4 ratio (2:1, 1:1 and 1:2), and CH4:steam ratio (1:1, 1:2 and 1:3) at a residence time of 3.5 × 103 gcat min/cc using a custom mixed gas that resembles biomass synthesis gas, over a commercial catalyst. Experiments were conducted using a Box-Behnken approach to evaluate the effect of the process variables. The average CO and CO2 selectivities were 68% and 18%, respectively, while the CH4 and CO2 conversions were about 65% and 48%, respectively. The results showed optimum conditions for maximum CH4 conversion was at 800 °C, CO2:CH4 ratio and CH4:steam ratios of 1:1.  相似文献   

20.
This study aims to examine the char-steam reactions in-situ, following the pyrolysis process of a demineralized coal in a micro fluidized bed reactor, with particular focuses on gas release and its kinetics characteristics. The main experimental variables were temperatures (925 °C?1075 °C) and steam concentrations (15%–35% H2O), and the combination of pyrolysis and subsequent gasification in one experiment was achieved switching the atmosphere from pure argon to steam and argon mixture. The results indicate that when temperature was higher than 975 °C, the absolute carbon conversion rate during the char gasification could easily reach 100%. When temperature was 1025 °C and 1075 °C, the carbon conversion rate changed little with steam concentration increasing from 25% to 35%. The activation energy calculated from shrinking core model and random pore model was all between 186 and 194 kJ/mol, and the fitting accuracy of shrinking core model was higher than that of the random pore model in this study. The char reactivity from demineralized coal pyrolysis gradually worsened with decreasing temperature and steam partial pressure. The range of reaction order of steam gasification was 0.49–0.61. Compared to raw coal, the progress of water gas shift reaction (CO + H2O ? CO2 + H2) was hindered during the steam gasification of char obtained from the demineralized coal pyrolysis. Meanwhile, the gas content from the char gasification after the demineralized coal pyrolysis showed a low sensitivity to the change in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号