共查询到20条相似文献,搜索用时 10 毫秒
1.
分析了圆锥滚子轴承的摩擦热来源,在此基础上以脂润滑下的CRH3列车用轴箱圆锥滚子轴承单元130/240-B-TVP为研究对象,通过热网络法建立圆锥滚子轴承的热节点的平衡方程组,采用牛顿-拉夫逊迭代法求解进行热分析,研究了各热节点随着径向载荷和运行速度的变化趋势,并得出了圆锥滚子轴承在工作过程中温度最高点和最低点分别出现在滚子与轴承内圈接触处和主轴上. 相似文献
2.
针对我国自主研发的某型高速列车行驶过程中发生轴箱轴承温度预警情况,探讨轴箱轴承的产热和传热计算,提出一种基于各滚动体受力大小的局部热源加载方式,利用ANSYS中Fluent模块建立轴箱轴承温度场有限元仿真模型和进行稳态温度场分析,并根据列车线上实测数据加以验证。结果表明:测温孔温度仿真值与实测值的误差为0.33%;轴箱箱体温度最高点位于轴箱测温孔部位;轴承温度由上而下成梯度递减,轴承顶端滚动体与内圈的接触区、两轴承内圈接触区上部温度较高。研究结果为深入研究列车运行工况参数对轴箱轴承温度场的影响规律、摸清轴箱轴承温度预警原因奠定了基础。 相似文献
3.
4.
基于热网络技术,对发动机的轴承腔在实际工况条件下的温度场分布进行了研究,在对固体结构件、润滑油的热物性参数分析、工况条件和边界条件分析的基础上,通过求解包含23个节点温度值的方程组,获得了轴承腔的稳态温度场分布。 相似文献
5.
6.
7.
建立动车组整车动力学模型,通过仿真得到轴箱轴承在列车运行中所受的外载荷。建立轴箱轴承动力学和有限元模型,分析了径向载荷、转速以及轨道激扰对滚子和保持架之间的作用力、保持架应力的影响,基于Miner线性累积损伤理论预测保持架寿命,并基于ISO 281∶2007预测了整套轴承的寿命,结果表明:径向载荷对保持架应力的影响最小,随径向载荷增大,滚子和保持架之间的作用力及保持架应力稍有增加;转速对保持架应力的影响最为显著,随转速升高,滚子和保持架之间的作用力及保持架应力增大;轨道激扰的加入增加了滚子和保持架之间的作用力及保持架应力;轴箱轴承保持架寿命约为1 241.5×104 km,满足使用要求。 相似文献
8.
针对我国某型高速列车发生的轴箱轴承温度预警问题,应用ANSYS建立轴箱轴承有限元仿真模型,依据各滚动体受力大小,分配轴承摩擦发热功率,使用FLUENT完成轴箱轴承稳态温度场分析,并利用实际监测数据验证模型的有效性。在此基础上,分析风向、注脂量对轴箱轴承温度场的影响,并采用正交试验法仿真分析风速、行车速度、环境温度对温度场的影响规律。结果表明,风向对轴箱轴承温度场的影响较小,注脂量为240 g时,测温孔温度与轴承最高温度高于220 g注脂量;风速、行车速度、环境温度对测温孔温度均有显著影响,影响程度由大到小依次为行车速度、环境温度、风速;测温孔温度与轴承最高温度随风速增加而降低,随行车速度、环境温度增加而增加,但风速和环境温度对轴承最高温度的影响较小。研究结果为轴箱轴承温度预警原因分析、合理设置测温传感器预警阈值提供了参考。 相似文献
9.
为研究齿轮箱圆锥滚子轴承在不同实际运行工况下的温度分布,对圆锥滚子轴承进行热分析并建立其有限元模型;采用ADAMS对圆锥滚子进行动力学分析,得到滚子在不同转速下的接触正压力和摩擦力,将结果导入ANSYS进行静力学分析后得到滚子的平均接触应力,在此基础上求得摩擦热流量,进而获得轴承的稳态温度场,并通过试验验证了模型的正确性。结果表明,随着转速的增加,轴承温度不断升高;轴承滚动体与内圈接触时的温度高于与外圈接触时的温度,最大值出现在滚子与轴承内圈的接触处。 相似文献
10.
目前,风力发电迅速发展,发电机组可靠性非常重要,而分析发电机轴承温度变化可控制发电机工作性能。分析轴承温度场的研究方法主要有热网络法、有限元法及实验法。采用热网格法将发电机轴承系统温度节点离散化得到主要节点温度。利用传热学与摩擦学分析发电机轴承发热量数学模型,基于轴承工作状况,选择合适的轴承内部对流换热系数,在有限元软件下分析轴承内部稳态温度场的分布情况和热变形,得到了合理的轴承温度场云图,并分析了发电机轴承在风速突变转速下的温度场。 相似文献
11.
12.
李国栋王文华薛文根崔冬杰 《轴承》2019,(9):6-8
针对某城铁项目内置轴箱式转向架出现的轴箱轴承定位挡圈松动问题,从结构形式、装配工艺、动态接触仿真等方面进行分析,确定主要失效原因为:内侧定位挡圈两端贴合面在车轴挠曲变形下卸荷而失去轴向定位作用。改进设计,车轴与定位挡圈采用过盈配合,并在内圈定位挡圈上增加凸缘结构,装车使用表明改进后的轴承运行良好。 相似文献
13.
14.
16.
阐述了影响圆锥滚子轴承产品可靠性的薄弱环节,计细分析了影响圆锥滚子轴承产品可靠性的主要因素,概述了提高产品可靠性的有关措施。附图3幅,表1个,参考文献2篇。 相似文献
17.
18.
滚动轴承温度场研究的现状和展望 总被引:1,自引:0,他引:1
高速滚动轴承的温升及温度分布状态直接影响着主轴—轴承系统的工作性能和使用寿命。滚动轴承转速的不断提高,则会导致轴承摩擦生热急剧增加,如果热量得不到及时有效地散发,轴承内部的温度将会异常升高。温度过高则会导致轴承内部零件表面灼伤甚至相互胶合、咬死而早期报废,后果十分严重。因此,随着主轴—轴承系统转速的不断提高,滚动轴承内部的温升及温度分布已经成为需要考虑的重要指标。我们对高速滚动轴承的发热机理、传热过程及温度分布三个方面分别进行了深入地分析和探讨;详细阐述了国内外学者对轴承热分析研究的现状及存在的主要问题;并对未来滚动轴承温度场的研究进行了展望。 相似文献
19.
张秀君 《精密制造与自动化》1997,(1)
本文介绍了圆锥滚子轴承的结构特点,在选择材料、制造、设计等方面的改善与创新.圆锥滚子轴承现在可以在高速和高精度的场合下广泛使用,并且轴承尺寸减小,承受负荷能力增大。 相似文献