首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
酶法结合高压法制备甘薯回生抗性淀粉   总被引:2,自引:0,他引:2  
本试验以甘薯淀粉为原料,采用酶解-压热法制备RS3型抗性淀粉,研究了淀粉乳浓度、压热时间、压热温度、α-淀粉酶、预糊化时间、pH值以及冷藏时间和温度对抗性淀粉制备产率的影响。结果表明:甘薯回生抗性淀粉最佳制备条件为:甘薯淀粉乳浓度为10%;α-淀粉酶加量为120U/ml;预糊化时间为30min;最佳压热温度为120℃,压热处理时间为30min;老化温度为4℃,时间为12 h。采用此工艺制备甘薯回生抗性淀粉,其制备产率可达到7.365%。  相似文献   

2.
α-淀粉酶水解马铃薯淀粉制备抗性淀粉   总被引:4,自引:3,他引:4  
以马铃薯淀粉为原料,研究制备RS3型抗性淀粉制备工艺,以抗性淀粉制备产率为考察指标,探讨淀粉浓度、淀粉糊化温度、酶加量、作用时间、作用温度、老化温度和时间等对抗性淀粉产率影响。结果表明,马铃薯回生抗性淀粉最佳制备工艺参数分别为:淀粉乳浓度为10%、高压温度120℃、高压时间30min、α–淀粉酶加入量为120U/mL,淀粉溶液酶解时间30min、pH为6、老化温度4℃、老化时间12h,马铃薯回生抗性淀粉产率达1.126%。  相似文献   

3.
超声波对甘薯回生抗性淀粉生成的作用   总被引:3,自引:0,他引:3  
以甘薯淀粉为原料,研究超声波作用时间、作用温度、作用顺序、盐离子以及淀粉乳浓度对回生抗性淀粉制备产率的影响。研究结果表明,超声波作用下制备回生抗性淀粉的最佳工艺条件为:淀粉乳浓度20%,NaCl的最佳加入量为每100 mL淀粉乳2.0 g,α-淀粉酶加入量200 U/100 mL,酶解时间30 min,酶解温度95℃,超声波作用在酶解和高压之间,超声波作用时间60 min,作用温度30℃,压热温度120℃,压热时间30 min,老化时间12 h,在这种工艺条件下,甘薯回生抗性淀粉产率最高为8.2%,比未经超声波作用的2.5%提高了2.28倍。  相似文献   

4.
多种酶法处理提高马铃薯回生抗性淀粉制备率   总被引:4,自引:1,他引:4  
以马铃薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究α–淀粉酶、糖化酶和纤维素酶种类、酶加量、酶解时间、酶解温度、酶解pH、多种酶最佳配比及酶解顺序对RS3型抗性淀粉制备产率影响。固定条件:淀粉乳10%,高压温度120℃,高压时间30min,老化温度4℃,老化时间12h,糖化酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:糖化酶加量为1,200U/mL,酶解时间为60min,pH为5.0,酶解温度为55℃,制备产率达8.862%;纤维素酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:纤维素酶加量为40U/mL,酶解时间为45min,pH为5.0,酶解温度为35℃,制备产率达17.748%。α–淀粉酶、糖化酶和纤维素酶两两联合处理、三种酶共同处理均使马铃薯回生抗性淀粉制备产率降低;而纤维素酶处理可大大提高马铃薯回生抗性淀粉制备产率。RS3制备过程系为通过破坏纤维素等阻隔淀粉分子聚集的非淀粉物质提高制备产率,比将淀粉分子分解从颗粒结构中释放出以提高RS3制备产率更为有效。  相似文献   

5.
以甘薯淀粉为原料制备抗性淀粉,用正交实验确定压热处理制备抗性淀粉的最佳制备工艺。结果表明,甘薯抗性淀粉制备的最佳条件为:淀粉糊的浓度35%、pH值4.5、糊化温度115℃、糊化时间70min、老化时间72h。  相似文献   

6.
中温α-淀粉酶处理提高甘薯回生抗性淀粉制备率   总被引:2,自引:1,他引:2  
以甘薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究中温α–淀粉酶处理对RS3型抗性淀粉制备产率影响。结果表明,中温α–淀粉酶处理制备甘薯回生抗性淀粉最佳工艺条件为:淀粉乳10%,中温α–淀粉酶添加量为0.02 U/mL,酶解温度80℃,酶解时间15 min,淀粉乳pH7.0;在最佳条件下制备甘薯回生抗性淀粉产率达25.45%,比对照组提高1.68倍。  相似文献   

7.
以甘薯淀粉为原材料,甘薯淀粉回生率为指标,研究冷藏、常温、真空减压和干燥箱干燥等不同老化工艺对甘薯回生抗性淀粉生成率的影响.结果表明,4℃冷藏条件下,老化72 h后甘薯淀粉回生率达到最高,由9.2%提高到13.4%;常温下,大气温度为16~19℃,大气湿度为68%~80%时,常温老化96 h后甘薯淀粉回生率达到最高,由9.9%提高到15.4%;真空干燥箱温度为30℃,真空度为0.08 MPa时98 h甘薯淀粉回生率最大为20.96%;干燥箱温度为30℃时,老化90 h甘薯淀粉回生率最大为15.38%;真空老化有利于甘薯淀粉回生.  相似文献   

8.
干燥工艺对甘薯淀粉回生率影响   总被引:1,自引:0,他引:1  
以甘薯淀粉为原材料,以甘薯淀粉回生率为指标,研究常温、太阳晒、真空减压、干燥箱和微波干燥等不同干燥工艺对甘薯回生抗性淀粉生成率影响。结果表明,各干燥最佳工艺参数为:常温下大气温度为16℃~19℃、大气湿度为68%~80%时,老化后甘薯淀粉5 d达至恒重,回生率由3.5%提高到4.5%,提高28.5%;阳光照射下,大气温度为23℃~36℃、大气湿度为42%~74%时,老化后甘薯淀粉5 d达至恒重,回生率由3.5%提高到4.7%,提高34.2%;真空干燥箱温度为120℃、真空度为0.08 MPa时,甘薯淀粉回生率最大,为14.62%,比空白提高3.1倍;干燥箱温度为90℃时,甘薯淀粉回生率最大,为12.24%,比空白提高2.5倍;微波温度为45℃时,甘薯淀粉回生率最大,为7.12%,比空白提高1倍;相比之下,真空干燥有利于甘薯淀粉回生。  相似文献   

9.
玉米抗性淀粉的制备及其性质的研究   总被引:5,自引:0,他引:5  
对玉米抗性淀粉的制备工艺进行了研究,确定了最佳的制备工艺:淀粉调乳(浓度2 5 % ,pH值8 0 )→预糊化→压热处理(12 0℃,30min)→冷却→低温静置(4℃,2 4h)→提纯。按该工艺制备RS ,其产率可达10 4 7%。研究了玉米抗性淀粉的性质,包括抗酶解能力、对普通淀粉黏度特性的影响、吸水能力及微观颗粒形貌。  相似文献   

10.
以蕨根淀粉为试验材料,采用单因素试验和Box-Behnken试验优化微波法制备蕨根淀粉的工艺条件。微波法制备蕨根抗性淀粉优化工艺条件为微波时间1 min、微波功率480 W、淀粉乳浓度20%、回生温度4℃、回生时间24 h。该条件下,蕨根抗性淀粉含量为14.21%,明显高于原蕨根淀粉的抗性淀粉含量(1.02%)。  相似文献   

11.
章丽琳  叶陵  张喻 《中国酿造》2015,34(12):105
为了提高抗性淀粉的得率,并获得抗性淀粉制备方法的最佳工艺参数,该试验以马铃薯淀粉为原料,抗性淀粉得率为评价指标,采用纤维素酶-压热法制备马铃薯抗性淀粉。研究淀粉乳浓度、酶添加量、酶解时间、压热温度、压热时间5个因素对马铃薯抗性淀粉得率的影响,在单因素试验的基础上,通过正交试验优化得出马铃薯抗性淀粉的最佳制备工艺条件,即淀粉乳含量25%、淀粉乳pH 5.0、酶用量30 U/mL、酶解时间50 min、压热温度125 ℃、压热时间30 min、老化温度4 ℃、老化时间18 h,在此条件下抗性淀粉的得率为30.33%。  相似文献   

12.
湿热处理对甘薯淀粉流变特性的影响   总被引:1,自引:0,他引:1  
目的:采用HAAKE MARSⅢ型流变仪研究不同湿热处理条件下甘薯淀粉的流变性。方法:通过控制湿热处理的水分(10%~30%)、温度(90~130 ℃)和时间(4~12 h)对甘薯淀粉进行湿热改性。结果:原淀粉与湿热改性淀粉的糊具有明显的剪切稀化行为,其流变曲线也服从Herschel-Bulkley模型。不同湿热处理条件下得淀粉糊浓度系数K、屈服应力τ0均低于原淀粉(K=14.816 Pa·sn,τ0原=10.322 Pa),流动特性指数n高于原淀粉(n=0.47)。随着湿热处理水分、温度与时间的增加,淀粉糊的K逐渐减小,τ0则先增后减,湿热处理水分20%,温度110 ℃,时间8 h的屈服应力最大(τ0上行线=5.683 Pa,τ0下行线=12.423 Pa)。动态流变学特性表明:不论湿热改性与否,甘薯淀粉糊的储能模量(G')均大于损耗模(G″)。并且相对于原淀粉,湿热改性甘薯淀粉糊的黏弹性明显增加。结论:经过湿热处理,甘薯淀粉糊的浓度系数与屈服应力下降,非牛顿性减弱,黏弹性显著提高,更适合作为食品加工的辅料和添加剂。  相似文献   

13.
远红外线烘烤制作甘薯酥脆饼干的工艺探讨   总被引:5,自引:0,他引:5  
以鲜甘薯为主要原料,应用正交实验和远红外线烘烤技术探讨了制作甘薯酥脆饼干的工艺及参数,同时研究了常用辅料对烘烤甘薯酥脆饼干质构的影响。甘薯酥脆饼干的配方为:水分50%的熟甘薯100%,小麦面粉30%,马铃薯淀粉5%,木薯淀粉6%,玉米淀粉5%,NaHCO30.2%,NH4HCO30.2%;在配料中加入轻化油5%,全脂奶粉5%,人造奶油3%,鸡蛋2%,可强化甘薯酥脆饼干的酥松度和外观的质量;远红外线烘烤参数为:第一阶段烘烤温度95℃、时间70 min,第二阶段烘烤温度105℃、时间5 min。  相似文献   

14.
以马铃薯精制淀粉为原料,抗性淀粉得率为评价指标,通过单因素及正交试验确定了微波-酶解法制备马铃薯抗性淀粉的最佳工艺条件:在淀粉乳质量分数15%,微波作用时间90 s,微波作用功率800 W,耐高温α-淀粉酶添加量10 CU/g干淀粉,耐高温α-淀粉酶作用时间30 min,普鲁兰酶添加量0.10 PUN(G)/g干淀粉,普鲁兰酶酶解时间6 h,普鲁兰酶作用温度55℃的条件下,4℃老化24 h。经重复验证,RS得率最高达14.0%。  相似文献   

15.
该试验以紫薯渣为原料研究果胶提取工艺,对预处理后的紫薯渣以果胶含量为考察指标,研究酸提取条件及脱色条件。结果表明,紫薯渣在pH 7.0,温度75 ℃时,α-淀粉酶用量60 U/g原料,酶解时间30 min条件下除去淀粉;酸提取工艺条件为盐酸提取液pH值1.5,温度85 ℃,时间105 min;脱色条件为活性炭用量1%,脱色温度70 ℃,时间30 min;在此条件下制备的果胶含量为3.979%。  相似文献   

16.
本研究通过考察紫甘薯全粉面蒸煮损失率、微观结构、流变学特性及抗性淀粉含量的变化,探讨加工过程中蒸制、老化和冷冻等处理条件对紫甘薯全粉面品质的影响。结果表明,经蒸制、老化或冷冻处理后,挤压制备紫甘薯全粉面的蒸煮损失率、抗性淀粉含量、微观结构及流变学特性均发生了变化。在老化时间为2~4h时,紫甘薯全粉面中抗性淀粉含量从3.01%增加至4.02%,老化时间的进一步延长则对抗性淀粉含量无显著影响;在蒸制时间为3~5 min范围内,抗性淀粉含量由3.41%增加至4.82%,而在5min~11min范围内则从4.82%降至2.40%。处理方式对紫甘薯全粉面表面微观结构变化影响显著,适宜的蒸制、老化或冷冻处理可以改善紫甘薯全粉面的微观结构,但处理时间过长反而导致其结构被破坏。未经处理的紫甘薯全粉面其储能模量和损耗模量得值均明显高于经过不同处理的紫甘薯全粉面,且其储能模量均明显高于损耗模量,弹性模量占主导地位。因此,适宜的蒸制、老化和冷冻等处理可以有效改善紫甘薯全粉面的整体品质。  相似文献   

17.
母丽萍  雷激  李博  李小江 《食品科学》2010,31(20):513-517
以紫甘薯为原料探讨紫甘薯饮料制备的工艺条件。比较α- 淀粉酶液化和高温液化两种方式对淀粉液化的效果,并进一步添加糖化酶进行淀粉糖化,同时探讨各工序对花色苷的影响,以饮料的可溶性固形物增长率、吸光度及色差值为考察指标。结果表明:鲜薯用两倍水打浆,加入0.020g/100mL α- 淀粉酶于70℃条件下酶解40min,再添加0.04g/100mL 的糖化酶在pH5.0 条件下糖化40min,既可获得理想的淀粉水解效果,又可尽量减少花色苷的损失。较好的饮料配方为30% 甘薯原汁、8% 蔗糖、0.05% 柠檬酸,其余为软水。采用该工艺条件可制备色香味俱佳的紫甘薯饮料。  相似文献   

18.
王林  黄韬睿  李维 《食品工业》2021,(2):126-129
在传统四川小吃川北凉粉的制作工艺基础上,以紫薯全粉和豌豆淀粉为原料,通过单因素试验和正交试验,以感官评价、质构特性和析水率为评定指标,确定了紫薯豌豆凉粉的最佳制备工艺条件。结果表明,当紫薯全粉与豌豆淀粉配比为1︰4,粉水质量比为1︰5,调浆水温为95℃,加热时间为10 min时,制作出的紫薯豌豆凉粉凝胶效果好、质地最佳、弹性好、外表光滑不粗糙,风味最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号