首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
提出了一种GML文档结构聚类新算法MCF_CLU.与其它相关算法不同,该算法基于闭合频繁Induced子树进行聚类,聚类过程中不需树之间的两两相似度比较,而是挖掘GML文档数据库的闭合频繁Induced子树,为每个文档求一个闭合频繁Induced子树作为该文档的代表树,将具有相同代表树的文档聚为一类.聚类过程中自动生成簇的个数,为每个簇形成聚类描述,而且能够发现孤立点.实验结果表明算法MCF_CLU是有效的,且性能优于其它同类算法.  相似文献   

2.
为了简单有效地对数据集进行结构分析,提出了一种基于最小树进行聚类的算法(MSTCA).其基本思想是在最小树中切割所有大于一定阈值的边,对数据集进行子类划分,同时对较小的子类进行合并.MSTCA产生的聚类结果在不考虑子类次序时是唯一的。对它的递归调用还可在若干不同粒度层次上形成数据集的聚类结构.计算实验表明,MSTCA不仅能为具有各种不同聚类形状的数据集自适应地选择较好的聚类个数,而且只需简单的参数选择就能准确地分析出数据中存在的合理聚类和例外样本.  相似文献   

3.
提出了一种基于最大频繁Induced子树的GML文档结构聚类新算法TBCClustering.通过挖掘GML文档集合中的最大频繁Induced子树构造特征空间,并对特征空间进行优化;采用CLOPE聚类算法聚类GML文档,可自动生成最小支持度与聚类簇的个数,无需用户设置;不仅减少了特征的维数,而且得到了较高的聚类精度.实验结果表明算法TBCClustering是有效的,且性能优于PBClustering算法.  相似文献   

4.
介绍网络入侵检测和聚类的原理,建立基于迭代的凝聚分层聚类算法的入侵检测的数据分类模型,进行试验.并对模型的进一步改进和研究提出了看法.  相似文献   

5.
研究了应用聚类有效性函数指导数据分类的算法,指出文[6]中算法的不足并对其进行了修改。实验结果表明,修改后的算法是可行的。  相似文献   

6.
针对K均值聚类算法对类簇数目预先不可知及无法处理非凸形分布数据集的缺陷,提出基于进化思想的聚类算法及其类簇融合算法.该算法将K均值聚类算法嵌入进化聚类算法框架中,通过调整距离倍参,将数据逐渐划分,在此过程中自动确定类簇数目,提出基于最近距离的中间圆密度簇融合算法和基于代表类的中间圆密度簇融合算法,将相似度大的类簇进行融合,使得k值逐渐趋向真实值.实验表明,该方法具有良好的实用性.  相似文献   

7.
聚类算法初始聚类中心的优化   总被引:1,自引:0,他引:1  
对近年来k-means算法的研究现状与进展进行总结.首先对较有代表性的初始聚类中心改进的算法,从思想、关键技术和优缺点等方面进行分析.其次选用知名数据集对典型算法进行测试,主要从就同一个数据集不同改进算法的聚类情况进行对比分析,为聚类分析和数据挖掘等研究提供有益的参考.  相似文献   

8.
基于特征加权理论的数据聚类算法   总被引:1,自引:0,他引:1  
针对数据挖掘过程中数据聚类操作的初始聚类数目和初始聚类中心确定困难的问题,提出了一种软子空间结合竞争合并机制的模糊加权聚类算法.通过对软子空间聚类算法的目标函数进行改写,并结合数据簇势的大小对各数据簇进行竞争与合并操作,实现了对数据的聚类处理.结果表明,该算法能够准确地对数据样本进行聚类,并且聚类结果与初始数据簇数目和初始聚类中心无关,能够满足对高维数据聚类处理的需要,具有较好的实际应用价值.  相似文献   

9.
为解决现有的分布式聚类算法效率低下和不能保护数据隐私的问题,在K-Dmeans算法的基础上,提出一种新的分布式聚类算法.该算法利用数据对象间的密度函数值来优化站点初始聚类中心,从而大大降低了聚类的迭代次数;同时各从站点只需向主站点传送其聚簇的特征信息,有效降低分布式聚类过程中的通信量,保护了各个站点的独立性,实验结果表...  相似文献   

10.
针对模糊C-均值聚类算法对聚类数预先不可知和谱系聚类所具有的缺陷,提出了混合模糊谱系聚类算法,该算法结合模糊聚类和谱系聚类,自动确定聚类数目,并可以有效的对数据进行聚类.实验表明,该算法具有良好的有效性和可行性.  相似文献   

11.
针对凝聚式的层次聚类算法在聚类过程中层次化的迭代运算使误差不断累积,导致聚类结果较差的问题,在GN快速算法基础上提出了一种改进的凝聚式层次聚类算法,即网状聚类算法。实验结果表明,该改进算法避免了误差的积累,可以获得更高质量的聚类结果。  相似文献   

12.
分层网络中用于生成树抽象的优化方法   总被引:1,自引:0,他引:1  
提出了一种分层网络中用于生成树拓扑抽象的优化方法,以及基于此方法的逼近算法. 使用该优化方法及逼近算法可以在不增加抽象拓扑空间复杂度的前提下,减小生成树抽象所引起的加性QoS(服务质量)参数失真. 仿真结果表明,在生成树拓扑抽象中使用此逼近算法后,可大大减少源节点由于拓扑信息不准确而产生的路由决策错误数,提高网络性能.  相似文献   

13.
为了获得全局最优的高质量层次聚类结果,针对智能蚁群优化算法改进凝聚层次聚类算法,以获得高质量的层次聚类结果,提出一种新的基于蚁群优化和凝聚层次聚类的混合聚类方法.该方法使用改进的凝聚层次聚类算法和新的目标函数生成聚类的系统树图,利用内部指标评估解决方案,用智能蚁群优化算法支持的信息素反馈和信息素挥发机制控制蚁群在解决方案空间中的搜索.由于使用了元启发式优化,加快了搜索过程,避免了局部最优.在加州大学欧文分校多个数据集上的实验结果表明,新方法具备一定的可行性.  相似文献   

14.
针对存在更复杂运动模式的无序运动人群密集场景,提出了一种基于多层自适应聚类模型的分群检测算法.以基于高斯混合模型的背景去除算法和自适应初始化聚类算法为核心,通过建立多层自适应聚类模型实现密集人群的分群检测.实验数据库选用了大量真实室内外密集人群运动场景视频,并通过大量对比实验验证了算法的有效性、可靠性和优越性.  相似文献   

15.
为保证网络连通性和覆盖度的情况下,尽量合理、高效地使用网络能量,延长网络生命周期,提出一种基于分簇和局部优化的拓扑控制(cluster and local optimization topology control,CLTC)算法.基于树型网络模型,利用分簇思想将网络分割为不同的簇,簇内运用最小生成树算法,确定邻居节点关系,降低节点通信碰撞;簇间通过簇头连接,形成优化的骨干网络拓扑.仿真实验表明,运行CLTC算法,构建网络拓扑结构快速,通信开销小,可以有效降低节点平均能耗,延长网络周期.  相似文献   

16.
分簇是一种能将节点分成逻辑上独立的组的机制,在MANET中应用分簇算法得到的分级式结构能提高网络的总体性能.介绍了分簇算法的构成和度量分簇算法性能优劣的标准,并对几类典型的分簇算法进行了分析和比较,最后指出了其中存在的问题.  相似文献   

17.
最小生成树的prim算法及minimum函数   总被引:1,自引:0,他引:1  
本文介绍了最小生成树的prim算法,minimum函数的实现过程及该函数对由prim算法所得到的最小生成树的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号