首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to explore the influences of microwave heating on the composition of sunflower seeds and to extend our knowledge concerning the changes in oxidative stability, distribution of FA, and contents of tocopherols of sunflower seed oil. Microwaved sunflower seeds (Helianthus annuus L.) of two varieties, KL-39 and FH-330, were extracted using n-hexane. Roasting decreased the oil content of the seeds significantly (P<0.05). The oilseed residue analysis revealed no changes in the contents of fiber, ash, and protein that were attributable to the roasting. Analysis of the extracted oils demonstrated a significant increase in FFA, p-anisidine, saponification, conjugated diene, conjugated triene, density, and color values for roasting periods of 10 and 15 min. The iodine values of the oils were remarkably decreased. A significant (P<0.05) decrease in the amounts of tocopherol constituents of the microwaved sunflower oils also was found. However, after 15 min of roasting, the amount of α-tocopherol homologs was still over 76 and 81% of the original levels for the KL-39 and FH-330 varieties, respectively. In the same time period, the level of σ-tocopherol fell to zero. Regarding the FA composition of the extracted oils, microwave heating increased oleic acid 16–42% and decreased linoleic acid 17–19%, but palmitic and stearic acid contents were not affected significantly (P<0.05).  相似文献   

2.
A comparative study is presented of the FA composition (FAC) of the seed oils from the yellow passion fruit Passiflora edulis Sims var. flavicarpa (I), the purple fruit Passiflora edulis Sims var. edulis (II), the purple Kawanda hybrid, which is a cross between I and II (III), and the light-yellow apple passion fruit Passiflora maliformis L. (IV) grown in Uganda. Oil yields from the four varieties were between 18.5 and 28.3%. A GC analysis of the oils showed the most dominant FA to be linoleic (67.8–74.3%), oleic (13.6–16.9%), palmitic (8.8–11.0%), stearic (2.2–3.1%), and α-linolenic (0.3–0.4%) acids. The unsaturated FA content in the oils was high (85.4–88.6%). Iodine values of the seed oils of I, II, III, and IV calculated from the FAC were 133, 141, 133, and 138, respectively. The FAC and the iodine value of the seed oil in III are distinctly closer to the rootstock (I) than the scion (II). This indicates that the rootstock influence on the FAC of passion fruit seeds is graft-transmissible. The study further confirms that passion fruit seed oils represent a good source of essential unsaturated FA.  相似文献   

3.
The sandalwood kernels of Santalum insulare (Santalaceae) collected in French Polynesia give seed oils containing significant amounts of ximenynic acid, E-11-octadecen-9-oic acid (64–86%). Fatty acid (FA) identifications were performed by gas chromatography/mass spectrometry (GC/MS) of FA methyl esters. Among the other main eight identified fatty acids, oleic acid was found at a 7–28% level. The content in stearolic acid, octadec-9-ynoic acid, was low (0.7–3.0%). An inverse relationship was demonstrated between ximenynic acid and oleic acid using 20 seed oils. Results obtained have been compared to other previously published data on species belonging to the Santalum genus, using multivariate statistical analysis. The relative FA S. insulare composition, rich in ximenynic acid is in the same order of those given for S. album or S. obtusifolium. The other compared species (S. acuminatum, S. lanceolatum, S. spicatum and S. murrayanum) are richer in oleic acid (40–59%) with some little differences in linolenic content.  相似文献   

4.
Azcan N  Kara M  Demirci B  Başer KH 《Lipids》2004,39(5):487-489
Seed oils of Origanum onites L. from the Antalya and Mugla regions and O. vulgare L. from the Kirklareli region of Turkey were extracted with hexane in a Soxhlet apparatus. The oil yields were 14.1–20.0 and 18.5%, respectively. FA compositions of the seed oils were determined by GC and GC/MS. Twenty FA were identified in both O. onites and O. vulgare seeds. The major FA of both species were linolenic (56.3–57.0%; 61.8%), linoleic (21.5–21.7%; 18.8%), oleic (8.7–8.9%; 5.9%), palmitic (5.9–6.5%; 5.5%), stearic (2.1–2.4%; 2.1%), and (Z)-11-octadecenoic (0.6–0.8%; 0.5%), respectively.  相似文献   

5.
Interprovenance variation was examined in the composition of Moringa oleifera oilseeds from Pakistan. The hexane-extracted oil content of M. oleifera seeds harvested in the vicinity of the University of Agriculture, Faisalabad (Punjab, Pakistan), Bahauddin Zakariya University (Multan, Pakistan), and the University of Sindh, Jamshoro (Sindh, Pakistan), ranged from 33.23 to 40.90%. Protein, fiber, moisture, and ash contents were found to be 28.52–34.00, 6.52–7.50, 5.90–7.00, and 6.52–7.50%, respectively. The physical and chemical parameters of the extracted M. oleifera oils were as follows: iodine value, 67.20–71.00; refractive index (40°C), 1.4570–1.4637; density (24°C), 0.9012–0.9052 mg/mL; saponification value, 177.29–184.10; unsaponifiable matter, 0.60–0.83%; color (1-in. cell), 1.00–1.50 R+20.00–30.00Y; smoke point, 198–202°C; and acidity (% as oleic acid), 0.50–0.74. Tocopherols (α, γ, and δ) accounted for 114.50–140.42, 58.05–86.70, and 54.20–75.16 mg/kg, respectively, of the oils. The induction periods (Rancimat, 20 L/h, 120°C) of the crude oils were 9.64–10.66 h and were reduced to 8.29–9.10 h after degumming. Specific extinctions at 232 and 270 nm were 1.80–2.50 and 0.54–1.00, respectively. The major sterol fractions of the oils were campesterol (14.13–17.00%), stigmasterol (15.88–19.00%), β-sitosterol (45.30–53.20%), and ͤ5-avenasterol (8.84, 11.05%). The Moringa oils were found to contain high levels of oleic acid (up to 76.00%), followed by palmitic, stearic, behenic, and arachidic acids up to levels of 6.54, 6.00, 7.00, and 4.00%, respectively. Most of the parameters of M. oleifera oils indigenous to different agroclimatic regions of Pakistan were comparable to those of typical Moringa seed oils reported in the literature. The results of the present analytical study, compared with those for different vegetable oils, showed M. oleifera to be a potentially valuable oilseed crop.  相似文献   

6.
Seed oils from six legume cultivars of Phaseolus vulgaris, grown in the Kingdom of Lesotho, were extracted and their physicochemical properties and FA compositions were determined in order to compare their dietary lipids with those in P. vulgaris cultivars grown in other parts of the world. The oil content of the beans was very low, ranging from 1.5 to 2.0% (w/w). The acid values ranged from 11.0 to 19.2 mg KOH/g, whereas a combination of the PV and the p-anisidine values in Holm's equation gave oxidation values that ranged from 11.0 to 15.0. Thus, considerable enzymatic hydrolysis and oxidation had taken place in the beans during storage. Iodine values ranged from 80.5 to 92.3 (Wijs method), indicating moderate unsaturation in the oils. However, capillary GC analysis, supported by proton NMR analysis of the FAME, gave a total unsaturation range from 79.67 to 84.24%. The dominant FA were α-linolenic acid (36.47–48.81%) and linoleic acid (20.96–36.10%), with appreciable amounts of palmitic acid (14.33–18.23%). This FA composition pattern is quite similar to the FA distribution reported for low oil-bearing legume seeds. Thus, notwithstanding the different climatic and soil conditions, the general properties of lipids in the southern African legume cultivars were quite similar to those of lipids in P. vulgaris cultivars grown in other parts of the world. The high content of α-linolenic acid in the cultivars of P. vulgaris could very likely play a beneficial role in reducing the risk of coronary heart disease among the large populations consuming them in the southern African region.  相似文献   

7.
Cuphea PSR23, a semi-domesticated, high-capric-acid hybrid from Cuphea viscosissima × Cuphea lanceolata, is being developed as a potential commercial alternative source of medium-chain fatty acids. The present study evaluated the effects of initial seed moisture and final moisture contents of cooked flaked seed on Cuphea’s pressing characteristics and the quality of the extracted oil. Seeds with 9 and 12% initial moisture contents (MC) were flaked and cooked at different residence times to produce cooked seeds with MC of 3.0–5.5%. Cooked seeds were pressed using a laboratory screw press. Eighty and 84% oil were extracted from cooked seeds with 5.5 and 3.0% MC, respectively. The seeds with 9% initial MC exhibited lower pressing load increase (9.1 per 1% decrease in MC) than the seeds with 12% initial MC (16.4 per 1% decrease in MC). The pressing rate decreased by 3% as the cooked flaked seed MC decreased. The amount of foots in the oil increased from 3 to 6.6% and chlorophyll content increased from 200 to 260 ppm as cooked flaked seed MC decreased from 5.5 to 3.0%. FFA contents were 2.5% for all treatments MC studied. The phosphatide content increased as the cooked flaked seed MC decreased but the amounts were still within the levels of water-degummed oil. This paper may contain brand names that are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

8.
The composition of the oils extracted from the acorn fruit of three species of Mediterranean oaks, Quercus ilex L., Q. suber L., and Q. faginea L., was characterized. Both major and minor components, including FA, TG, sterols, methyl sterols, triterpenic and aliphatic alcohols, tocopherols, and hydrocarbons, were identified by standard methods and MS. High-resolution GLC and HPLC were used for quantification. The FA profile, together with the equivalent carbon numbers and TG carbon numbers, was compared with data for other edible vegetable oils. Oil yield, expressed as wet weight, was 5% (w/w). Sterol content was remarkable for the three species (8,563–11,420 mg/kg), with β-sitosterol being the most abundant (80%). Oils were also high in tocopherol, with a wide variation between species (165–456 mg/kg) but with γ-tocopherol predominating in all three oils (90% of the total tocopherol content). Also, high terpenic alcohol contents were found (1527–2984 mg/kg), with dammaradienol and β-amyrin being the most abundant (33–60% of the total alcohol content). Bioactive properties and industrial applications of this underutilized native product are also discussed.  相似文献   

9.
A comprehensive compositional and characterization study was carried out on five seed oils from varieties of the melons Citrullus lanatus and C. colocynth in order to evaluate their suitability for large-scale exploitation as edible vegetable oils. The oils were extracted by Soxhlet with a 3:1 mixture of n-hexane/2-propanol with yields that ranged from 24.8 to 30.0% (wt/wt). The refractive indices and relative densities of the oils fell within the narrow ranges of 1.465–1.469 and 0.874–0.954 g/cm3, respectively. Saponification values ranged between 182.1 and 193.8 mg KOH/g, whilst iodine values (IV) ranged from 95.8 to 124.0 (Wijs). The ranges of the values for free fatty acid (AV), 1.2–4.0 mg KOH/g, peroxide (PV), 1.1–10.9 meq/kg and p-anisidine (p-AV), 0.2–9.0, indicated that secondary oxidation products were barely present. GC analysis gave total unsaturation contents of 67.93–82.36%, with linoleic acid (18:2) being the dominant fatty acid (55.21–66.85%). The GC results agreed closely with those from proton NMR analysis of the fatty acid classes. The physicochemical and compositional properties determined in this study show that the qualities of the test Cucurbitacea seed oils are highly comparable to those of soybean, sunflower and groundnut seed oils. Therefore, the test melon seed oils could be developed into commercial products to serve as alternate vegetable oils in Southern and West Africa, the regions where these melons grow.  相似文献   

10.
Muscle lipids and fatty acids (FA) of catfish Arius madagascariensis were determined in catfish caught in the Betsiboka River, Madagascar, during a 5-month sampling period. Total lipids from muscle were extracted and quantified. Fatty acids were identified by means of gas chromatography–mass spectrometry of FA methyl esters and FA pyrrolidides, leading to the identification of 42 FA. Lipid content was relatively high in our fish sample and ranged from 4.3 to 6.6% of wet muscle. Three FA dominated the FA composition: palmitic acid (C16:0, 22.9–32.6%), oleic acid (C18:1n-9, 11.3–13.4%) and stearic acid (C18:0, 10.8–12.0%). A number of polyunsaturated FA (PUFA) were present in appreciable amounts, including arachidonic acid (C20:4n-6, 4.7–7.6%), docosahexaenoic acid (C22:4n-6, 3.0–8.1%), eicosapentaenoic acid (C20:5n-3, 0.6–1.0%), n-3 docosapentaenoic acid (C22:5n-3, 1.1–1.6%), n-6 docosatetraenoic acid (C22:4n-6, 0.7–1.2%) and n-6 docosapentaenoic acid (22:5n-6, 0.9–1.8%). The sum of the n-6 PUFA and n-3 PUFA was 11.3–18.8 and 7.5–13.4%, respectively. These results indicate that A. madagascariensis, an abundant freshwater fish in Madagascar rivers, may be good source of dietary PUFA.  相似文献   

11.
The positional distribution of fatty acids (FA) of triacylglycerols (TAG) and major phospholipids (PL) prepared from four cultivars of peas (Pisum sativum L.) were investigated as well as their tocopherol contents. The lipids extracted from these peas were separated by thin-layer chromatography (TLC) into seven fractions. The major lipid components were PL (52.2–61.3%) and TAG (31.2–40.3%), while the other components were also present in minor proportions (5.6–9.2%). γ-Tocopherol was present in the highest concentration, and α- and δ-tocopherols were very small amounts. The main PL components isolated from the four cultivars were phosphatidylcholine (42.3–49.2%), followed by phosphatidylinositol (23.3–25.2%) and then phosphatidylethanolamine (17.7–20.5%). Small but significant differences (P < 0.05) in FA distribution existed when different pea cultivars were determined. However, the principal characteristics of the FA distribution in the TAG and the three PL were evident among the four cultivars; unsaturated FA were predominantly located in the sn-2 position, and saturated FA primary occupied the sn-1 or sn-3 position in the oils of the peas. These results suggest that the regional distribution of tocopherols and fatty acids in peas is not dependent on the climatic conditions and the soil characteristics of the cultivation areas during the growing season.  相似文献   

12.
This study presents the FA composition and trans FA (TFA) contents of different hydrogenated vegetable oils and blended fats marketed in Pakistan. Thirty-four vanaspati (vegetable ghee), 11 shortenings, and 11 margarines were analyzed. The contents of saturated FA, cis monounsaturated FA, and cis PUFA were in the following ranges: vanaspati 27.8–49.5, 22.2–27.5, 9.3–13.1%; vegetable shortenings 37.1–55.5, 15.8–36.0, 2.7–7.0%; and margarines 44.2–55.8, 21.7–39.9, 2.9–20.5%, respectively. Results showed significantly higher amounts of TFA in vanaspati samples, from 14.2 to 34.3%. Shortenings contained TFA proportions of 7.3–31.7%. The contents of TFA in hard-type margarines were in the range of 1.6–23.1%, whereas soft margarines contained less than 4.1% TFA.  相似文献   

13.
The effects of extraction methods on sesame oil stability   总被引:1,自引:0,他引:1  
The oxidative stability of sesame oil, as measured by the Rancimat test, was shown to be dependent on extraction methods and seed pre-treatment. Oils extracted from whole seeds were more stable than those extracted from dehulled seeds by the same method. Extraction of the same seeds with polar solvents and effective seed crushing yielded more-stable oils (16.7–21.3 Rancimat hours) compared with extraction with nonpolar solvents and coarsely crushed or pressed seeds (4.5–6.4 Rancimat hours). Heptane-isopropanol (3:1, vol/vol) provided slightly more stable oils thann-hexane by the same method. Results are discussed in relation to some of the major anti- and prooxidants present in the oils.  相似文献   

14.
Seed and oil contents, and fatty acid compositions of oils of 20 caneberries grown in Korea were determined. Fatty acid compositions of the oils were analyzed using GC for the extracted and methylated oils from the berry seeds. The seeds comprised 4–10% (w/w) of the wet berries and accounted for 26–62% of the dry berries. Moisture and oil contents of the berry seeds were 8–17 and 13–28% (dry basis), respectively. More than 90% of the total fatty acids in the oils from the berry seeds were unsaturated. Linoleic and linolenic acids comprised 49–70 and 13–34%, respectively, of the oils in the berry seeds.  相似文献   

15.
Mungbean is a widely consumed legume globally. This study was carried out for detailed characterization of oils from mungbean seeds from four indigenously cultivated varieties, as very little information is available on the oil composition of mungbean seeds and inter-varietal variation in oil composition. The oil content was relatively low (2.1–2.7%). The investigated physiochemical parameters included refractive indices (RI) at 40 °C (1.4673–1.4698), relative density (0.9580–0.9618), iodine value (IV) (111.4 –117.1), saponification value (SV) (173.1–181.7 mg KOH/g) and unsaponifiable matter (UM) (13.8–15.01%). Phospholipids and triglycerides were the dominant lipid fractions followed by monoglycerides. Linoleic acid and oleic acid were the dominant fatty acids (FA). Characterization was also made by TLC. Tocopherol analysis demonstrated highest content of γ-tocopherol among its isomers, while α-tocotrienol was present in highest amount in all studied cultivars, among its isomers. Results from most of the parameters revealed significant (P ≤ 0.05) differences among the cultivars. The findings of the study reveal mungbean [Vigna radiata (L.) wilczek], to be a potentially valuable legume crop with comparable nutritional quality oil among all the cultivars.  相似文献   

16.
The present study targeted the whole-fruit oil yield and fatty acid composition from five of the most abundant Arecaceae species grown in Cuba. The oil yields (% dry weight), determined by the Soxhlet extraction technique with hexane, were 25.5, 5.3, 6.9, 5.4, and 6.4% for Roystonea regia, Colpothrinax wrightii, Sabal maritima, Sabal palmetto and Thrinax radiata, respectively. The free fatty acid (FFA) content varied from 2.7 to 6.8%. Fatty acid (FA) profiles of the oils indicated that lauric acid (13.7–44.4%), myristic acid (9.4–22.4%) and palmitic acid (9.2–17.1%) as major saturated FA; whereas oleic acid (9.6–42.7%) and linoleic acid (9.3–17.0%) as major unsaturated FA. R. regia fruit seemed the most promising among Arecaceae grown in Cuba because of its high oil yield and low oil FFA content.  相似文献   

17.
The seed oils from twenty-five Conifer species (from four families—Pinaceae, Cupressaceae, Taxodiaceae, and Taxaceae) have been analyzed, and their fatty acid compositions were established by capillary gas-liquid chromatography on two columns with different polarities. The oil content of the seeds varied from less than 1% up to 50%. Conifer seed oils were characterized by the presence of several Δ5-unsaturated polymethylene-interrupted polyunsaturated fatty acids (Δ5-acids) with either 18 (cis-5,cis-9, 18∶2,cis-5,cis-9,cis-12 18∶3, andcis-5,cis-9,cis-12,cis-15 18∶4 acids) or 20 carbon atoms (cis-5,cis-11 20∶2,cis-5,cis-11,cis-14, 20∶3, andcis-5,cis-11,cis-14,cis-17 20∶4 acids). Pinaceae seed oils contained 17–31% of Δ5-acids, mainly with 18 carbon atoms. The 20-carbon acids present were structurally derived from 20∶1n-9 and 20∶2n-6 acids. Pinaceae seed oils were practically devoid of 18∶3n-3 acid and did not contain either Δ5-18∶4 or Δ5-20∶4 acids. Several Pinaceae seeds had a Δ5-acid content higher than 50 mg/g of seed. The only Taxaceae seed oil studied (Taxus baccata) had a fatty acid composition related to those of Pinaceae seed oils. Cupressaceae seed oils differed from Pinaceae seed oils by the absence of Δ5-acids with 18 carbon atoms and high concentrations in 18∶3n-3 acid and in Δ5-acids with 20 carbon atoms (Δ5-20∶3 and Δ5-20∶4 acids). Δ5-18∶4 Acid was present in minute amounts. The highest level of Δ5-20∶4 acid was found inJuniperus communis seed oil, but the best source of Δ5-acids among Cupressaceae wasThuja occidentalis. Taxodiaceae seed oils had more heterogeneous fatty acid compositions, but the distribution of Δ5-acids resembled that found in Cupressaceae seed oils. Except forSciadopytis verticillata, other Taxodiaceae species are not interesting sources of Δ5-acids. The distribution profile of Δ5-acids among different Conifer families appeared to be linked to the occurrence of 18∶3n-3 acid in the seed oils.  相似文献   

18.
The physicochemical properties of crude Nigella seed (Nigella sativa L.) oil which was extracted using Soxhlet, Modified Bligh–Dyer and Hexane extraction methods were determined. The effect of different extraction methods which includes different parameters, such as temperature, time and solvent on the extraction yield and the physicochemical properties were investigated. The experimental results showed that temperature, different solvents and extraction time had the most significant effect on the yield of the Nigella oil extracts. The fatty acid (FA) compositions of Nigella seed oil were further analyzed by gas chromatography to compare the extraction methods. The C16:0, C18:1 and C18:2 have been identified to be the dominant fatty acids in the Nigella seed oils. However, the main triacylglycerol (TAG) was LLL followed by OLL and PLL. The FA and TAG content showed that the composition of the Nigella seed oil extracted by different methods was mostly similar, whereas relative concentration of the identified compounds were apparently different according to the extraction methods. The melting and crystallization temperatures of the oil extracted by Soxhlet were −2.54 and −55.76 °C, respectively. The general characteristics of the Nigella seed oil obtained by different extraction methods were further compared. Where the Soxhlet extraction method was considered to be the optimum process for extracting Nigella seed oil with a higher quality with respect to the other two processes.  相似文献   

19.
The fatty acid compositions of the seeds from four Cephalotaxus species or varieties (plum yews; Cephalotaxaceae) and two Podocarpus species (podocarps; Podocarpaceae) have been established. These compositions were compared with those previously published for some Taxaceae species (Taxus and Torreya). Cephalotaxaceae, Podocarpaceae, and Taxaceae belong to the Taxares suborder. Δ5-Olefinic acids are present in the seed lipids from all species analyzed. In Cephalotaxus, Podocarpus, and Torreya, the prominent Δ5-olefinic acid that occurs is the trienoic acid 5,11,14–20:3 (sciadonic) acid, comprising from 6.7 to 26.4% of total fatty acids. In these species, the Δ5,11 structure is largely favored over the Δ5,9 structure: the 5,9–18:2 (taxoleic) and 5,9,12–18:3 (pinolenic) acids are at the limit of detection, in contrast to Taxus and most Pinaceae species, where these two Δ5-olefinic acids generally predominate. 14-Methylhexadecanoic acid, an habitual though minor component of Pinaceae and Ginkgo biloba seed lipids, could not be detected in Cephalotaxus species studied here and was tentatively identified in trace amounts only in one Podocarpus species. In addition to sciadonic acid, Cephalotaxus and Podocarpus seeds are characterized by unusually high amounts of 11,14–20:2 acid, in the range of 3.1–12.0%. This contrasts with most of the 170 species of conifers analyzed so far (from the families Pinaceae, Cupressaceae, Taxodiaceae, Taxaceae, and Sciadopityaceae, which belong to the Pinares suborder), where this acid is generally ≤2%. A close resemblance between Torreya grandis and three of the Cephalotaxus species analyzed might be indicative of some phyletic relationship between the families Cephalotaxaceae and Taxaceae. 13C nuclear magnetic resonance spectroscopy of the seed oils from C. drupaceae and P. andinus has shown that Δ5-olefinic acids are apparently excluded from the internal position of triacylglycerols, which is a characteristic common to all Coniferales species analyzed so far, and consequently of great antiquity.  相似文献   

20.
The physico-chemical characteristics of the seeds and seed oils of four citrus species, Mitha (Citrus limetta), Grapefruit (Citrus paradisi), Mussami (Citrus sinensis), and Kinnow (Citrus reticulata) were investigated. The hexane-extracted oil content of citrus seeds ranged from 27.0 to 36.5%. The protein, fiber and ash contents were found to be 3.9–9.6%, 5.0–8.5%, and 4.6–5.6%, respectively. The extracted oils exhibited an iodine value of 99.9–110.0; refractive index (40 °C), 1.4639–1.4670; density (24 °C), 0.920–0.941 mg/mL; saponification value, 180.9–198.9; unsaponifiable matter, 0.3–0.5%; acid value (mg KOH/g of oil), 0.5–2.2 and color (1-in. cell) 1.4–3.0R + 15.0–30.0Y. The oils revealed a good oxidative stability as indicated by the determinations of specific extinctions at 232 and 270 nm (2.3–4.4 and 0.6–0.9, respectively), p-anisidine value (2.2–3.2) and peroxide value (1.6–2.4 mequiv/kg of oil). The citrus seed oils mainly consisted of linoleic acid (36.1–39.8%). Other prominent fatty acids were palmitic acid (25.8–32.2%), oleic acid (21.9–24.1%), linolenic acid (3.4–4.4%), and stearic acid (2.8–4.4%). The contents of tocopherols (α, γ, and δ) in the oil were 26.4–557.8, 27.7–84.1, and 9.1–20.0 mg/kg, respectively. The results of the present study demonstrated that the seeds of citrus species investigated are a potential source of valuable oil which might be utilized for edible and other industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号