首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of ammonia and nitric oxide oxidation on the selective catalytic reduction (SCR) of NO by ammonia with copper/nickel and vanadium oxide catalysts, supported on titania or alumina have been investigated, paying special attention to N2O formation. In the SCR reaction, the VTi catalyst had a higher activity than VAl at low temperatures, while the CuNiAl catalyst had a higher activity than CuNiTi. A linear relationship between the reaction rate of ammonia oxidation and the initial reduction temperature of the catalysts obtained by H2-TPR showed that the formation rate of NH species in copper/nickel catalysts would be higher than in vanadia catalysts. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that copper/nickel catalysts presented ammonia coordinated on Lewis acid sites, whereas ammonium ion adsorbed on Brønsted acid sites dominated on vanadia catalysts. The NO oxidation experiments revealed that copper/nickel catalysts had an increase of the NO2 and N2O concentrations with the temperature. NO could be adsorbed on copper/nickel catalysts and the NO2 intermediate species could play an important role in the reaction mechanism. It was suggested that the presence of adsorbed NO2 species could be related to the N2O formation.  相似文献   

2.
The reaction pathways of N2 and N2O formation in the direct decomposition and reduction of NO by NH3 were investigated over a polycrystalline Pt catalyst between 323 and 973 K by transient experiments using the temporal analysis of products (TAP-2) reactor. The interaction between nitric oxide and ammonia was studied in the sequential pulse mode applying 15NO. Differently labelled nitrogen and nitrous oxide molecules were detected. In both, direct NO decomposition and NH3–NO interaction, N2O formation was most marked between 573 and 673 K, whereas N2 formation dominated at higher temperatures. An unusual interruption of nitrogen formation in the 15NO pulse at 473 K was caused by an inhibiting effect of adsorbed NO species. The detailed analysis of the product distribution at this temperature clearly indicates different reaction pathways leading to the product formation. Nitrogen formation occurs via recombination of nitrogen atoms formed by dissociation of nitric oxide or/and complete dehydrogenation of ammonia. N2O is formed via recombination of adsorbed NO molecules. Additionally, both products are formed via interactions between adsorbed ammonia fragments and nitric oxide.  相似文献   

3.
In situ Raman spectroscopy was used for studying the ternary 2% CrO3–6% V2O5/TiO2 catalyst, for which a synergistic effect between vanadia and chromia leads to enhanced catalytic performance for the selective catalytic reduction (SCR) of NO with NH3. The structural properties of this catalyst were studied under NH3/NO/O2/N2/SO2/H2O atmospheres at temperatures up to 400 °C and major structural interactions between the surface chromia and vanadia species are observed. The effects of oxygen, ammonia, water vapor and sulfur dioxide presence on the in situ Raman spectra are presented and discussed.  相似文献   

4.
Sharp NO and O2 desorption peaks, which were caused by the decomposition of nitro and nitrate species over Fe species, were observed in the range of 520–673 K in temperature-programmed desorption (TPD) from Fe-MFI after H2 treatment at 773 K or high-temperature (HT) treatment at 1073 K followed by N2O treatment. The amounts of O2 and NO desorption were dependent on the pretreatment pressure of N2O in the H2 and N2O treatment. The adsorbed species could be regenerated by the H2 and N2O treatment after TPD, and might be considered to be active oxygen species in selective catalytic reduction (SCR) of N2O with CH4. However, the reaction rate of CH4 activation by the adsorbed species formed after the H2 and N2O or the HT and N2O treatment was not so high as that of the CH4 + N2O reaction over the catalyst after O2 treatment. The simultaneous presence of CH4 and N2O is essential for the high activity of the reaction, which suggests that nascent oxygen species formed by N2O dissociation can activate CH4 in the SCR of N2O with CH4.  相似文献   

5.
V.A. Kondratenko  M. Baerns   《Catalysis Today》2007,121(3-4):210-216
An effect of oxygen species formed from O2, N2O and NO on the selectivity of the catalytic oxidation of ammonia was studied over a polycrystalline Pt catalyst using the temporal analysis of products (TAP) reactor. The transient experiments were performed in the temperature range between 773 and 1073 K in a sequential pulse mode with a time interval of 0.2 s between the pulses of the oxidant (O2, N2O and NO) and NH3. In contrast to adsorbed oxygen species formed from NO, those from O2 and N2O reacted with ammonia yielding NO. It is suggested that the difference between these oxidising agents may be related to the different active sites for dissociation of O2, N2O and NO, where oxygen species of various Pt-O strength are formed. Weaker bound oxygen species, which are active for NO formation, originate from O2 and N2O rather than from NO. These species may be of bi-atomic nature.  相似文献   

6.
The selective catalytic reduction (SCR) of NOx (NO + NO2) by NH3 in O2 rich atmosphere has been studied on Cu-FAU catalysts with Cu nominal exchange degree from 25 to 195%. NO2 promotes the NO conversion at NO/NO2 = 1 and low Cu content. This is in agreement with next-nearest-neighbor (NNN) Cu ions as the most active sites and with NxOy adsorbed species formed between NO and NO2 as a key intermediate. Special attention was paid to the origin of N2O formation. CuO aggregates form 40–50% of N2O at ca. 550 K and become inactive for the SCR above 650 K. NNN Cu ions located within the sodalite cages are active for N2O formation above 600 K. This formation is greatly enhanced when NO2 is present in the feed, and originated from the interaction between NO (or NO2) and NH3. The introduction of selected co-cations, e.g. Ba, reduces very significantly this N2O formation.  相似文献   

7.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

8.
The objective of this research is to asses the impact of the addition of H2O, SO2, and both in the SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths. The sulphated catalyst keeps a 100% conversion and total selectivity to N2 in the low temperature range, i.e. 473–500 K, when either H2O or SO2 is added to the gas feed. However, a decline of steady state conversion and selectivity occurs when both H2O and SO2 are added simultaneously because H2O speeds up the deposition of ammonium sulphate salts. This decrease of catalyst performance is reversed when the reaction is carried out under dry conditions at temperatures higher than 473 K but not at lower temperature (453 K). Thus, the catalyst has demonstrated to be a good candidate for the SCR of NO at low temperatures even in stack gases containing traces of undesired components.  相似文献   

9.
The catalytic reduction of NOx in the typical operation temperatures and oxygen concentrations of diesel engines has been studied in the presence of V3W9Ti in a tubular flow reactor. The results have shown that the selective catalytic reduction is strongly affected by the oxygen concentration in low temperature range (150–275 °C). At higher temperatures, the reaction becomes independent of the O2 concentration. The rate of the selective catalytic reduction of NO with ammonia may be considerably enhanced by converting part of the NO into NO2. DRIFT measurements have shown that NH3 and NO2 are adsorbed on the catalyst surface on the contrary of NO. The experiments have shown that the decrease in N2 selectivity of the SCR reaction is mainly due to the SCO of ammonia and to the formation of nitrous oxide.  相似文献   

10.
A series of sulfated zirconia supported Pd/Co catalysts was synthesized by the sol–gel method and examined for NOx reduction by methane. The NO conversion increased up to a Co/S ratio of 0.43, and then decreased at a higher Co loading (Co/S = 0.95). Sulfate content was also essential for obtaining high selectivity to molecular nitrogen. A catalyst loaded with 0.06 wt.% Pd, 2.1 wt.% Co and 2.1 wt.% S (Pd/Co-SZ-2) exhibited remarkable performance under lean conditions and displayed stability in a long-term durability test using a synthetic reaction mixture containing 10% water vapor. This catalyst exhibited the highest sulfur retention most probably as cobalt sulfide. Besides, the catalytic oxidation of NO to NOy groups was confirmed by FT-IR, in agreement with the general mechanism for the SCR of NO by hydrocarbons. In the absence of oxygen in the feed stream, the catalyst was highly active for NO reduction with methane. IR stretching bands assigned to N2O and adsorbed nitro groups were identified upon adsorbing NO on Pd/Co-SZ-2. This indicates that under rich conditions disproportionation of NO to N2O and NO2 occurs and confirms that the formation of NO2 species is an essential step for NO reduction by CH4.  相似文献   

11.
The influence of NO2 on the selective catalytic reduction (SCR) of NO with ammonia was studied over Fe-ZSM5 coated on cordierite monolith. NO2 in the feed drastically enhanced the NOx removal efficiency (DeNOx) up to 600 °C, whereas the promoting effect was most pronounced at the low temperature end. The maximum activity was found for NO2/NOx = 50%, which is explained by the stoichiometry of the actual SCR reaction over Fe-ZSM5, requiring a NH3:NO:NO2 ratio of 2:1:1. In this context, it is a special feature of Fe-ZSM5 to keep this activity level almost up to NO2/NOx = 100%. The addition of NO2 to the feed gas was always accompanied by the production of N2O at lower and intermediate temperatures. The absence of N2O at the high temperature end is explained by the N2O decomposition and N2O-SCR reaction. Water and oxygen influence the SCR reaction indirectly. Oxygen enhances the oxidation of NO to NO2 and water suppresses the oxidation of NO to NO2, which is an essential preceding step of the actual SCR reaction for NO2/NOx < 50%. DRIFT spectra of the catalyst under different pre-treatment and operating conditions suggest a common intermediate, from which the main product N2 is formed with NO and the side-product N2O by reaction with gas phase NO2.  相似文献   

12.
Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) has been used to study NH3 and NO adsorption over a 15% w/w vanadia/titania catalyst. NH3 is adsorbed as coordinate NH3 and NH4+ species over the oxidised catalyst, leading to the reduction of the vanadia surface. At 300°C, adsorbed nitrosyls species are detected, suggesting that the oxidation of gaseous or adsorbed ammonia species takes place over the V=O sites. Coadsorption experiments show that NO is able to reoxidise about the 57% of the reduced V=O groups, resulting in N2, according to a NO+V→1/2N2+V=O reaction. On the other hand, NO is only adsorbed over vanadia reduced surfaces. The measure of the area of the 2ν(V=O) bands results in an estimate of the oxidation state of vanadium. From this estimate it can be concluded that nitrosyls species are adsorbed on the catalyst surface for vanadium atoms having an oxidation state ranging from +4 to +3.1.  相似文献   

13.
Reaction activities of several developed catalysts for NO oxidation and NOx (NO + NO2) reduction have been determined in a fixed bed differential reactor. Among all the catalysts tested, Co3O4 based catalysts are the most active ones for both NO oxidation and NOx reduction reactions even at high space velocity (SV) and low temperature in the fast selective catalytic reduction (SCR) process. Over Co3O4 catalyst, the effects of calcination temperatures, SO2 concentration, optimum SV for 50% conversion of NO to NO2 were determined. Also, Co3O4 based catalysts (Co3O4-WO3) exhibit significantly higher conversion than all the developed DeNOx catalysts (supported/unsupported) having maximum conversion of NOx even at lower temperature and higher SV since the mixed oxide Co-W nanocomposite is formed. In case of the fast SCR, N2O formation over Co3O4-WO3 catalyst is far less than that over the other catalysts but the standard SCR produces high concentration of N2O over all the catalysts. The effect of SO2 concentration on NOx reduction is found to be almost negligible may be due to the presence of WO3 that resists SO2 oxidation.  相似文献   

14.
Cu-ZSM-5 and Cu-AlTS-1 catalysts were prepared by solid state ion exchange and studied in DeNOx reactions. A NO3 type surface complex was found to be an active intermediate in the decomposition of NO and N2O. Copper was oxidized to Cu2+ in the decomposition reactions. Oscillations at full N2O conversion were observed in the gas phase O2 concentration, without any change in the N2 concentration. The oscillation was synchronized by gas phase NO formed from the NO3 complex. The same complex seems to be an active intermediate also in NO selective catalytic reduction (SCR) by methane, whereas carbonaceous deposits play a role in NO SCR by propane. TPD reveals that only 10–20% of the total copper in the zeolites participates in the catalytic cycles.  相似文献   

15.
TiO2-SiO2 with various compositions prepared by the coprecipitation method and vanadia loaded on TiO2-SiO2 were investigated with respect to their physico-chemical characteristics and catalytic behavior in SCR of NO by NH3 and in the undesired oxidation of SO2 to SO3, using BET, XRD, XPS, NH3-TPD, acidity measurement by the titration method and activity test. TiO2-SiO2, compared with pure TiO2, exhibits a remarkably stronger acidity, a higher BET surface area, a lower crystallinity of anatase titania and results in allowing a good thermal stability and a higher vanadia dispersion on the support up to high loadings of 15 wt% V2O5. The SCR activity and N2 selectivity are found to be more excellent over vanadia loaded on TiO2-SiO2 with 10–20 mol% of SiO2 than over that on pure TiO2, and this is considered to be associated with highly dispersed vanadia on the supports and large amounts of NH3 adsorbed on the catalysts. With increasing SiO2 content, the remarkable activity decrease in the oxidation of SO2 to SO3, favorable for industrial SCR catalysts, was also observed, strongly depending on the existence of vanadium species of the oxidation state close to V4+ on TiO2-SiO2, while V5+ exists on TiO2, according to XPS. It is concluded that vanadia loaded on Ti-rich TiO2-SiO2 with low SiO2 content is suitable as SCR catalysts for sulfur-containing exhaust gases due to showing not only the excellent de-NOx activity but also the low SO2 oxidation performance.  相似文献   

16.
Kinetics of the simultaneous reduction N2O and NO by CO on CuCo2O4 has been studied. The reactants are adsorbed onto the coordination-unsaturated cations of the catalyst. The studies showed that the reactions of N2O and CO and of NO and CO occur between the adsorbed reactants on the catalyst surface; the catalyst surface is partially reduced during both these reactions. It was found that NO inhibits the reaction between N2O and CO, because N2O and NO compete for the active surface sites. The adsorption capacity of the catalyst is significantly higher for NO than for N2O and hence NO displaces N2Oads from the surface. The inhibition occurs on strongly localized sites and does not affect on the behaviour of the remaining free sites. At such blockage, the N2O reduction rate decreases in direct proportion to the amount of adsorbed NO.  相似文献   

17.
18.
Combined effect of H2O and SO2 on V2O5/AC the activity of catalyst for selective catalytic reduction (SCR) of NO with NH3 at lower temperatures was studied. In the absence of SO2, H2O inhibits the catalytic activity, which may be attributed to competitive adsorption of H2O and reactants (NO and/or NH3). Although SO2 promotes the SCR activity of the V2O5/AC catalyst in the absence of H2O, it speeds the deactivation of the catalyst in the presence of H2O. The dual effect of SO2 is attributed to the SO42− formed on the catalyst surface, which stays as ammonium-sulfate salts on the catalyst surface. In the absence of H2O, a small amount of ammonium-sulfate salts deposits on the surface of the catalyst, which promote the SCR activity; in the presence of H2O, however, the deposition rate of ammonium-sulfate salts is much greater, which results in blocking of the catalyst pores and deactivates the catalyst. Decreasing V2O5 loading decreases the deactivation rate of the catalyst. The catalyst can be used stably at a space velocity of 9000 h−1 and temperature of 250 °C.  相似文献   

19.
The interactions between Pd/TiO2 catalyst and the reactants and potential reaction intermediates present during aqueous nitrate reduction, including NO3, NO2 and NO in the presence of H2 and H2O were studied by infrared spectroscopy. Adsorbed forms of NO, nitrite and nitrate could all be detected in the presence of water. In the presence of water/H2, nitrate was the most stable surface species followed by nitrite and then highly reactive NO, suggesting that the reduction of nitrate to nitrite is the rate-limiting step. High concentrations of adsorbed nitrite appear to be linked to the detection of gaseous N2O while the formation of ammonia is related to reactions on the Pd surface and the extent of formation is linked to high levels of adsorbed NO in addition to the surface hydrogen availability and the presence of water.  相似文献   

20.
Both NO decomposition and NO reduction by CH4 over 4%Sr/La2O3 in the absence and presence of O2 were examined between 773 and 973 K, and N2O decomposition was also studied. The presence of CH4 greatly increased the conversion of NO to N2 and this activity was further enhanced by co-fed O2. For example, at 773 K and 15 Torr NO the specific activities of NO decomposition, reduction by CH4 in the absence of O2, and reduction with 1% O2 in the feed were 8.3·10−4, 4.6·10−3, and 1.3·10−2 μmol N2/s m2, respectively. This oxygen-enhanced activity for NO reduction is attributed to the formation of methyl (and/or methylene) species on the oxide surface. NO decomposition on this catalyst occurred with an activation energy of 28 kcal/mol and the reaction order at 923 K with respect to NO was 1.1. The rate of N2 formation by decomposition was inhibited by O2 in the feed even though the reaction order in NO remained the same. The rate of NO reduction by CH4 continuously increased with temperature to 973 K with no bend-over in either the absence or the presence of O2 with equal activation energies of 26 kcal/mol. The addition of O2 increased the reaction order in CH4 at 923 K from 0.19 to 0.87, while it decreased the reaction order in NO from 0.73 to 0.55. The reaction order in O2 was 0.26 up to 0.5% O2 during which time the CH4 concentration was not decreased significantly. N2O decomposition occurs rapidly on this catalyst with a specific activity of 1.6·10−4 μmol N2/s m2 at 623 K and 1220 ppm N2O and an activation energy of 24 kcal/mol. The addition of CH4 inhibits this decomposition reaction. Finally, the use of either CO or H2 as the reductant (no O2) produced specific activities at 773 K that were almost 5 times greater than that with CH4 and gave activation energies of 21–26 kcal/mol, thus demonstrating the potential of using CO/H2 to reduce NO to N2 over these REO catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号