首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
油田伴生气气质富、压力低,普遍采用直接换热工艺回收丙烷及丙烷以上重烃,存在系统冷量利用不合理、气质适应性差、系统能耗高等问题。以某油田油气处理厂装置为例,以提高装置整体经济效益为目标,提出了工艺改进方案。改进工艺采用两级分离方式,脱乙烷塔塔顶增设回流罐,降低重接触塔塔顶进料中丙烷含量,增强重接触塔的吸收作用,提高丙烷收率;应用夹点理论设计冷箱的换热网络,提高系统的冷热集成度和冷量利用率,冷箱改进后,脱乙烷塔塔底重沸器负荷降低189kW,降幅12.9%,丙烷制冷压缩机负荷减小142.8kW,冷量利用更加合理。工艺改进后装置丙烷收率和液化石油气产量得到了大幅提高,装置总体能耗变化不大,改进工艺每年可提高装置经济收益1 797万元,经济效益可观,建议在类似工况条件下推广应用。  相似文献   

2.
“膨胀机+重接触塔”天然气凝液回收工艺的优化   总被引:5,自引:0,他引:5  
胡文杰  朱琳 《天然气工业》2012,32(4):96-100
为了实现对新建渤西油气处理厂的“膨胀机+重接触塔(DHX)”天然气凝液回收工艺的优化,筛选出了影响丙烷收率和装置能耗的关键参数(低温分离器的冷凝分离温度和压力、膨胀机的膨胀比、重接触塔顶温度和脱乙烷塔底温度),通过比选,确定了干气外输压缩机进口压力(1 000 kPa)、膨胀机的膨胀比和主要设备的操作压力。根据Hysys工艺模拟计算结果,对各主要设备的操作温度对丙烷收率和能耗的影响规律进行了分析,结果发现:①低温分离器入口温度越低,丙烷收率越高,但是温度过低会导致脱乙烷塔底热负荷大大增加,即能耗增加;②脱乙烷塔顶气相经冷箱Ⅱ换热冷凝后进入重接触塔顶的温度越低,丙烷收率越高,脱乙烷塔底热负荷基本不变,但存在一个温度极限值,当进入重接触塔顶的温度低于-92 ℃时,塔底热负荷呈直线趋势急剧增加;③采用重接触塔工艺方案时,脱乙烷塔底温度越高,丙烷收率越高,塔底的热负荷也越高。当塔底温度高于56 ℃(极限值)时,塔底热负荷呈直线趋势急剧增加,丙烷收率出现陡降。经综合考虑,确定了该工艺的最佳操作温度(低温分离器入口温度为-39 ℃,脱乙烷塔顶气相经冷箱Ⅱ换热冷凝后进入重接触塔顶的温度为-86 ℃,脱乙烷塔底温度为52 ℃),实现了丙烷收率和能耗之间的平衡和收益最大化。  相似文献   

3.
高尚堡天然气处理装置采用丙烷+膨胀机制冷的DHX冷凝分离工艺回收C+3轻烃,由于原料气流量降低、气质组成中CO2和H2S含量升高、处理装置操作参数变化造成液化气铜片腐蚀不合格、设备冻堵、丙烷收率低等问题。对装置存在问题进行分析后,改进处理工艺,脱除原料气中的CO2和H2S至合理范围,解决液化气铜片腐蚀不合格和设备冻堵问题,降低酸性组分对装置冷凝温度的限制。筛选出影响装置丙烷收率和能耗的主要可调参数:膨胀机出口压力、脱乙烷塔操作压力、脱乙烷塔底温度、脱丁烷塔操作压力。通过HYSYS软件模拟结果分析装置主要可调参数对丙烷收率和装置能耗的影响规律,优化运行参数,实现丙烷收率和能耗之间的平衡,达到效益最大化。优化后,装置每年能耗费用增加108.1万元,但产品收入增加439.8万元,每年增加经济效益331.7万元。  相似文献   

4.
目前国内大多数高压凝析气田存在对丙烷回收不够重视,或采用的丙烷回收工艺能耗较高且回收率低,如何合理高效的回收高压凝析气中的丙烷成为当前高压凝析气田开发所面临的问题。通过对国内外凝液回收工艺分析研究发现,低压凝析气田气回收丙烷时采用双塔丙烷回收工艺较为合适,但双塔工艺回收高压凝析气的丙烷时有其自身的不足。传统的双塔回收工艺中膨胀机出口压力与吸收塔塔压相近,吸收塔塔压受脱乙烷塔压力限制不宜太高,导致高压原料气进膨胀机后出口压力低、冷量过剩,外输气压力高的条件下外输压缩功较大,系统综合能耗高。为减少外输压缩功、保证丙烷回收率以及提高流程的适应性,在结合综合换热理论及吸收原理的基础上开发出高压天然气丙烷回收工艺HPARL(High Pressure Absorber Recycle Liquid)。HPARL工艺具有丙烷回收率高、系统能耗低、工艺的节能优势显著等特点。通过用HYSYS软件对高压丙烷回收工艺HPARL模拟,原料气压力大于7MPa时,该流程具能耗低,丙烷回收率高(可达99%),且压力越高适应性越好,与传统双塔丙烷回收工艺相比,在给定的气质条件下系统单位能耗可降低16.7%。  相似文献   

5.
单塔塔顶循环(SCORE)工艺是国外广泛采用的一种低温分离流程,主要用于回收天然气中丙烷及比丙烷更重组分,是在塔顶循环(OHR)丙烷回收流程基础上的一种改进丙烷回收工艺,该工艺流程具有流程简单、丙烷回收率高、系统热集成度高、对气质适应性强等特点。分析了SCORE工艺流程结构、工艺原理及流程特征,流程中脱乙烷塔采用复合塔,由吸收段与分馏段组合而成,侧线气相抽出物流经冷凝分别为吸收段提供回流和侧线气相抽出补充物料,低温侧线液相抽出物流预冷原料气可降低重沸器负荷,提高系统热集成度和丙烷回收率。重点通过实例分析塔顶回流、气相及液相抽出物流等操作条件对SCORE流程的丙烷回收率及系统能耗的影响。并选取3组不同气质对SCORE流程进行适应性分析,结果表明,SCORE流程是一种回收率高、适应性较宽的高效丙烷回收流程,值得在我国丙烷回收工程领域推广应用。  相似文献   

6.
为使英台气田产气烃露点满足外输指标要求,同时提高产品附加值,对产气中的重烃进行回收,确定最优操作条件,采用一步法浅冷低温分离工艺回收天然气中的重烃。主要利用HYSYS软件模拟确定最优的制冷方式、冷凝温度、冷凝压力、防冻剂,以及脱乙烷塔、脱丁烷塔的操作条件。制冷方式采用J-T阀节流制冷+外加冷源制冷,冷凝温度为-35℃,冷凝压力为3.5 MPa,注甲醇抑制剂防冻堵,气提塔在线回收。脱乙烷塔操作压力1.5 MPa,理论塔板数7块,塔底再沸器温度为67.9℃;脱丁烷塔操作压力1.2 MPa,理论塔板数13块,塔顶冷凝器温度为57.11℃。经过处理天然气烃露点达到-15℃(3.5 MPa),满足GB 17820—2012 《天然气》 II类气指标要求,回收液化石油气(LPG) 10.5 t/d,稳定轻烃2.5 t/d。  相似文献   

7.
高压吸收塔工艺回收天然气凝液的模拟分析   总被引:1,自引:0,他引:1  
传统的天然气凝液回收流程中吸收塔的压力设置受分馏塔(脱甲烷塔/脱乙烷塔)压力的限制,当所处理的原料气压力高于6MPa,CO2量分数超过5%时,膨胀机的膨胀比很大,导致天然气凝液回收装置的能耗较大、膨胀机出口及吸收塔塔顶塔板处容易发生CO2冻堵。高压吸收塔工艺中吸收塔与分馏塔的操作压力可单独设置,吸收塔的操作压力较高,降低了外输干气的再压缩功率,膨胀机出口及吸收塔塔顶塔板处的操作工况远离了CO2固体的形成条件。研究实例表明:与传统的凝液回收流程相比,高压吸收塔流程中外输干气的再压缩功率降低了26.1%、吸收塔的CO2冻堵温度裕量升高了19.45℃、主换热器的热利用率提高了7.7%、丙烷回收率高达99.3%。  相似文献   

8.
DHX轻烃回收工艺常增设脱乙烷塔回流系统,以提高轻烃收率。以塔里木轻烃回收厂原料气组分、压力等实际参数为研究基础,在合理确定研究边界条件的基础上,应用HYSYS软件对DHX轻烃回收工艺可能存在的4种运行模式进行理论分析,通过对比分析可知:①J-T阀+回流泵的运行模式是不可行方案;②膨胀机制冷模式下,脱乙烷塔塔顶回流在显著提高丙烷收率的同时,可降低F线循环量43%,对于大型装置,可大幅度减小脱乙烷塔、DHX塔及屏蔽泵设计尺寸,减少设备投资与制造难度;③F线出冷箱温度对循环量的影响较大,在J-T阀制冷工况下,F线出冷箱温度应尽量控制在较高值,避免DHX塔底泵流量过小;在膨胀机制冷工况下,F线出冷箱温度不宜过高,避免DHX塔底泵超负荷运行;④在膨胀机制冷工况下,F线出冷箱温度过低时,DHX塔顶部回流量降至最小循环量以下,装置丙烷收率快速下降;⑤要使装置丙烷收率达到98%以上的先进水平,回流罐温度不宜高于-31 ℃。   相似文献   

9.
由于国外某油田伴生气全部用于放空,为了提高资源利用率,保护生态环境,对该放空天然气进行C3+组成回收,生产液化石油气(LPG)和凝析油。为此,开展了丙烷制冷+膨胀机制冷+DHX工艺回收轻烃方案设计研究,采用天然气两级预冷的丙烷制冷+膨胀机制冷+DHX工艺,并进行工艺参数优化。研究结果表明:设计的三种轻烃回收方案均能满足产品天然气中组成指标要求,DHX塔操作压力增加导致脱乙烷塔顶气抽出量明显增加,在满足产品天然气指标条件下,脱乙烷塔顶气抽出量范围逐渐变窄; DHX塔操作压力一定时,随着脱乙烷塔顶气抽出量增加,产品天然气中丙烷含量先减小后增加。较优的工艺参数是原料天然气一级预冷温度5℃,二级预冷温度-35℃,DHX塔操作压力1.60 MPa,脱乙烷塔操作压力3.05 MPa,脱乙烷塔顶气抽出量585 kmol/h。放空天然气能够回收LPG和凝析油47.97 t/d,生产天然气280×10~4m~3/d,经济效益显著。该研究成果对国内外油气田开展放空天然气回收利用具有参考意义。  相似文献   

10.
�ϳ���������װ�ù��ո��췽���о�   总被引:2,自引:0,他引:2  
四川南充轻烃回收装置采用热分离机制冷工艺,装置每天生产液化气1.5t,轻油1.0t,热分离机的等熵效率仅为35%~40%,丙烷收率不足15%,回收装置经济效益较差。因此,为了提高回收装置的产品收率和经济效益,对其工艺装置进行技术改造十分必要。由于热分离机的等熵效率低,制冷效果差,热分离机出口含大量的液烃未回收,脱乙烷塔顶温度比原设计值偏高,造成回收装置丙烷收率低。采用SHBWR状态方程作为工艺计算模型,通过工艺计算和方案对比分析,在充分利用现有流程中的设备、节省改造费用的条件下,提出了透平膨胀机制冷、二次分离的工艺改造方案。改造后的轻烃回收装置于1997年12月投产,与原有装置相比,降低了制冷温度,提高了液烃收率,达到了工艺设计的改造效果。  相似文献   

11.
为回收油气田中的丙烷,以现有专利DHX工艺为基准,提出两种丙烷回收改进工艺,并运用HYSYS对3种工艺进行了模拟和分析。结果表明:3种工艺均能满足丙烷回收率大于98%和脱乙烷塔塔底乙烷/丙烷比值小于等于1.6%的指标要求。专利DHX工艺复杂,采用丙烷冷冻系统,设备投资成本高。改良的DHX工艺Ⅰ和Ⅱ取消了丙烷制冷系统,简化了流程并且降低了设备投资。相对于改良方案Ⅰ,改良的DHX工艺Ⅱ干气出口压缩机的能耗增大47%;即从能耗及操作性角度而言,改良的DHX工艺Ⅰ既优于专利DHX工艺也优于改良的DHX工艺Ⅱ,建议丙烷回收装置采用改良的DHX工艺Ⅰ,可使丙烷高产出又经济低能耗。  相似文献   

12.
目的针对天然气深冷工艺装置中因原料气气量下降、气质变贫造成C2+轻烃收率下降、装置运行难度大等导致装置乙烷收率降低的问题,采用调配较富原料气气源、原料气中补充丙烷和原料气中补充丁烷等措施开展提高装置乙烷收率的工艺技术研究。 方法基于建立的工艺模型,对比核算原料气中补充丙烷和丁烷对提高乙烷产量的影响,考查分析原料气中补充丙烷和丁烷对改善脱甲烷塔运行状况的效果。 结果经现场验证得出,通过调配榆济线优质气源和补充丙烷等措施可有效提高装置乙烷收率,乙烷产品年产量可增加1 438.54 t,乙烷收率由62%提高至70%。 结论该工艺的应用不仅可以获得经济效益256.88 万元/年,而且具有较大的推广价值。   相似文献   

13.
催化裂化装置吸收稳定系统和气体分馏装置的联合优化   总被引:6,自引:0,他引:6  
介绍了催化裂化装置吸收稳定系统和气体分馏装置的联合优化,给出了优化的目标函数、优化变量和约束条件.通过装置的流程模拟和优化,提出了气体分馏装置新双塔流程(无脱乙烷塔,只有脱丙烷塔和丙烯精馏塔),以及各装置的优化工艺条件.其结果,催化裂化装置干气中的C3浓度进一步降低,产品收率提高;气体分馏装置取消了脱乙烷塔后丙烯回收率(以质量分数计),从原有的低于95%提高到99%左右.该项目已经于2004年在中国石油化工股份有限公司广州分公司成功实施,装置连续运转达5个月且各装置生产操作始终正常,丙烯产品中丙烯摩尔分数为99.6%以上.根据标定数据折算,生产能力共计0.32 Mt/a的两套气体分馏装置,销售收入净增达1 872.12×104RMB$/a,节能折合效益355.24×104RMB$/a,总计增加经济效益达2 227.16×104RMB$/a.该项目投入少、实施容易、效益明显,是一项在计算机模拟和优化指导下的联合优化工程.  相似文献   

14.
含CO2的天然气回收乙烷常受CO2冻堵的困扰而无法获得较高的经济效益。通过对烃类体系中CO2固体形成机理的分析,提出了CO2固体形成的必要条件是足够高的压力、足够低的温度、足够高的CO2浓度。并在此基础上根据乙烷回收流程、CO2含量等工艺条件提出了脱碳、合理控制工艺参数、引入防冻介质、工艺流程的改进等乙烷回收装置CO2固体形成控制措施。以RSV流程为例,分析了在一定工况条件下,当原料气CO2含量由0.5%上升至1.5%时,通过合理控制关键参数,可控制CO2固体形成;根据乙烷回收流程自身特点,提出了将脱乙烷塔底液烃或脱丙丁烷塔顶产品LPG作为防冻介质的两种防冻介质加入流程。最后在RSV流程的基础上改进出一种带预分离器的RSV流程(Recycle Split-Vapor with Preseparator,简称RSVP),并对改进效果进行分析。分析结果表明:相同工况条件下,与RSV流程相比,RSVP流程最小CO2冻堵裕量上升0.5℃~1.1℃,主体装置总压缩功降低3.5%~3.8%,但丙烷回收率降低0.1%~0.3%。  相似文献   

15.
目的提高南堡联合站天然气轻烃回收率,降低生产能耗。 方法基于HYSYS模拟软件建立模型,分别对天然气轻烃回收工艺的增压单元、冷冻分离单元、轻烃分馏单元等关键参数进行单因素分析。 得出各单因素的取值范围;依据各单因素的取值范围,以系统回收装置最小比功耗为目标函数,利用响应面分析法对参数进行优化,确定多因素关键参数的最佳组合。 结果优化后的流程比实际生产丙烷收率提升了5.62%,液化气产量提升了3.53%,产品比功耗减少了0.91%,装置总能耗降低了2.46%。结论响应面分析法用于天然气轻烃回收的各参数优化,提高了丙烷收率,降低了装置能耗,具有很好的经济性和应用前景。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号