首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal conductivity of nanoscale nickel particles due to phonon heat transfer is extrapolated from thin film results calculated using nonequilibrium molecular dynamics (NEMD). The electronic contribution to the thermal conductivity is deduced from the electrical conductivity using the Wiedemann–Franz law. Based on the relaxation time approximation, the electrical conductivity is calculated with the Kubo linear-response formalism. At the average temperature of T=300 K, which is lower than the Debye temperature ΘD=450 K, the results show that in a particle size range of 1.408–10.56 nm, the calculated thermal conductivity decreases almost linearly with decreasing particle size, exhibiting a remarkable reduction compared with the bulk value. The phonon mean free path is estimated, and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.  相似文献   

2.
This paper describes the temperature dependence of the total hemispherical emittance h in the temperature range from 173 to 700 K for three types of thermal control materials, which are based on a thin polymide film coated with aluminum on the back surface. The results obtained from the measurements are compared with calculated values from optical constants. The principle of the present measurement is based on the steady-state calorimetric method, and h is obtained by measuring the equilibrium temperature of a sample corresponding to different heat inputs to a heater attached to the sample. On the other hand, the present calculation method is performed by using data for the optical constants of polyimide films and vapor-deposited metal in the wavelength region from 0.25 to 100 m. These results agree with each other on the whole. It has been observed that the temperature dependence of h is remarkable, and the values have a maximum around 410 K.  相似文献   

3.
The density and thermal conductivity of a high-purity silicon melt were measured over a wide temperature range including the undercooled regime by non-contact techniques accompanied with electromagnetic levitation (EML) under a homogeneous and static magnetic field. The maximum undercooling of 320 K for silicon was controlled by the residual impurity in the specimen, not by the melt motion or by contamination of the material. The temperature dependence of the measured density showed a linear relation for temperature as: ρ(T) = 2.51 × 103−0.271(TT m) kg · m−3 for 1367 K < T < 1767 K, where T m is the melting point of silicon. A periodic heating method with a CO2 laser was adopted for the thermal conductivity measurement of the silicon melt. The measured thermal conductivity of the melt agreed roughly with values estimated by a Wiedemann–Franz law.  相似文献   

4.
The magnetic, thermal, and transport properties of martensitic phase transformation in single crystal Co5Ni2Ga3 have been investigated. The single crystal Co5Ni2Ga3 shows martensitic transformation at 251 K on cooling and 254 K on warming. Large jumps in the temperature-dependent resistance curve, temperature-dependent magnetization curve, and temperature-dependent thermal conductivity curve are observed at martensitic transformation temperature (T M). Negative magnetoresistance due to spin disorder scattering was observed in Co5Ni2Ga3 single crystal at all temperature range. The temperature-dependent negative magnetoresistance shows a peak at T M, which indicates that the spin disorder increases in the process of phase transition. Co5Ni2Ga3 sample exhibits a temperature dependence of thermal conductivity κ(T) (dκ/dT > 0) due to electrons being above temperature 100 K.  相似文献   

5.
The paper presents a reflectometer for high temperature measurements. In this apparatus, the directional-hemispherical spectral reflectivity is measured by comparing the optical response of the sample to white light with the response of a reference material. The reflected light, collected by an integrating sphere, is dispersed in a spectrograph and detected by an ICCD camera. This procedure allows the simultaneous measurement of the reflectivity in a large, continuous wavelength range (presently 510 to 860 nm). An electrical resistance heater is used to heat the samples up to about 1200 K; for higher temperatures a flash-lamp pumped dye laser is used. To avoid laser induced plasma generation, the integrating sphere is placed inside a vacuum chamber, which also allows measurements under a controlled atmosphere. The response of the apparatus is calibrated to an absolute scale which allows the determination of the sample temperature by fitting the thermal emission spectrum with Planck's formula. To check the performance of the apparatus, measurements on Fe2O3 (hematite) and NiO have been carried out.  相似文献   

6.
A novel method for measurement of the specific heat capacity in the temperature range from 150 to 310 K is described. In order to achieve good temperature homogeneity in a disk-shaped specimen, a cylindrical heater was used in an apparatus based on thermal radiation calorimetry. A mixture of Bi2O3 and MgO powders was used for blackening the surfaces of the specimen, the heater, and the inside wall of the chamber. The specific heat capacities of Ni, fused quartz glass, and BaTiO3 ceramic were measured to test the performance of the calorimeter. Agreement to within 5% of the values published in the literature was obtained for these samples. Thermal hysteresis and anomalies associated with the first-order phase transition in BaTiO3 were detected in the present experiment.  相似文献   

7.
High temperature,T c>90 K, superconductivity in YBa2Cu3O7−δ samples was observed from resistivity and magnetic susceptibility measurements. The zero-field-cooled susceptibility of the material was 60 to 100% of the ideal diamagnetic value depending on sample preparation. Structure identification by X-ray diffraction at both 293 and 89 K exhibited the same orthorhombic structure. Scanning tunnelling microscope investigations of the sample surface revealed steep step structure with 10×10 nm2 size crystallites and 5 to 100 nm high terraces. Temperature cycling between 77 and 293 K sometimes led to the appearance of white barium lumps on the surface and in the bulk of the sample causing the transition to the low resistance state at 90 K to disappear.  相似文献   

8.
A 3ω technique is developed for simultaneous determination of the thermal conductivity and thermal diffusivity of nanofluids. The 3ω measuring system is established, in which a conductive wire is used as both heater and sensor. At first, the system is calibrated using water with known thermophysical properties. Then, the thermal conductivity and thermal diffusivity of TiO2/distilled water nanofluids at different temperatures and volume fractions and the thermal conductivity of SiO2 nanofluids with different carrier fluids (water, ethanol, and EG) are determined. The results show that the working temperature and the carrier fluid play important roles in the enhancement of thermal transport in nanofluids. These results agree with the predictions for the temperature dependence effect by the Brownian motion model and the micro-convection model. For SiO2 nanofluids, the thermal-conductance enhancement becomes strong with a decrease in the heat capacity of the carrier fluids. Finally, according to our results and mechanism analysis, a corrected term is introduced to the Brownian motion model for providing better prediction of heat transport performance in nanofluids.  相似文献   

9.
In the measurement of thermal diffusivity by the laser flash method, a temperature rise occurs in the sample as a pulsed laser hits on the sample surface. Due to the temperature dependence of thermal diffusivity of the sample, the thermal diffusivity corresponds to a temperature that is larger by T eff than the temperature before laser irradiation is applied. This effective temperature rise, T eff, has been investigated by using a numerical simulation. The results indicate that the effective temperature rise is almost equal to a maximum temperature rise, T M, of the back surface of the sample in cases where both linear and nonlinear temperature variations of thermal diffusivity are considered.  相似文献   

10.
李宏林  李明玲  澎湃  王耀  常靖宇  方海燕 《材料导报》2016,30(Z2):269-271, 275
采用均匀共沉淀法制备了荧光黄含量不同的一组荧光水滑石(MgAl-LDHs-C20H12O5),研究了其晶体结构、外观形貌、荧光性能、表面官能团及热稳定性。X射线衍射(XRD)图谱显示少量荧光黄的加入没有影响水滑石的结晶性能,荧光水滑石具有典型的水滑石特征峰;扫描电镜(SEM)图片显示采用均匀共沉淀法制备的荧光水滑石是片层状结构,荧光黄均匀地吸附在水滑石片层表面;荧光水滑石样品在470nm波长光激发下的荧光发射光谱(PL)显示荧光水滑石在500~600nm间出现了1个黄光发射峰,其荧光强度与其中荧光黄的含量有关,荧光黄的含量要适中,过高或过低均影响样品的荧光性能;热重分析(TG)曲线表明荧光类水滑石的热稳定性比纯荧光黄提高很多;红外光谱(IR)显示荧光水滑石含有水滑石和荧光黄的特征官能团。  相似文献   

11.
Thin films of Praseodymium doped AlN are deposited on silicon (111) substrates at 77 K and 950 K by rf magnetron sputtering method. About 500–1000 nm thick films are grown at 100–200 watts RF power and 5–8 mTorr nitrogen, using a metal target of Al with Pr. X-rays diffraction results show that films deposited at 77 K are amorphous and those deposited at 950 K are crystalline. Cathodoluminescence studies are performed at room temperature and luminescence peaks are observed in a wide range from ultraviolet to infrared region. The most intense peak is obtained in green at 526 nm from amorphous films as a result from 3P13H5 transition. In crystalline films the intense peak was obtain in red at 648 nm as a result from 3P03F2 transition. Films are thermally activated at 1300 K for half an hour in a nitrogen atmosphere. Thermal activation enhances the intensity of luminescence. Two peaks at 488 nm and 505 nm merged after thermal activation, giving rise to a single peak at 495 nm.  相似文献   

12.
The thermal stability of nanoscale grains in cryomilled aluminum powders containing 1% diamantane was investigated. Diamantane is a diamondoid molecule consisting of 14 carbon atoms in a diamond cubic structure that is terminated by hydrogen atoms. The nanostructures of the resulting cryomilled powders were characterized using both transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The average grain size was found to be on the order of 22 nm, a value similar to that obtained for cryomilled Al without diamantane. To determine thermal stability, the powders were heated in an inert gas atmosphere at constant temperatures between 423 and 773 K (0.51T m to 0.83T m) for exposure times of up to 10 h. The average grain size for all powders containing diamantane was observed to remain in the nanocrystalline range (1–100 nm) for all exposures and was generally less than half of that for cryomilled pure Al heated under the same conditions. The thermal stability data were found to be consistent with a grain growth model based on drag forces exerted by dispersed particles against grain boundary migration. The present findings indicate that the presence of diamantane results in a substantial increase in the thermal stability of nanoscale grains in Al.  相似文献   

13.
The chemical vapor deposited (CVD) BP films on Si(100) (190 nm)/SiO x (370 nm)/Si(100) (625 μm) (SOI) and sapphire (R-plane) (600 μm) substrates were prepared by the thermal decomposition of the B2H6–PH3–H2 system in the temperature range of 800–1050 °C for the deposition time of 1.5 h. The BP films were epitaxially grown on the SOI substrate, but a two-step growth method, i.e., a buffer layer at lower temperature and sequent CVD process at 1000 °C for 1.5 h was effective for obtaining a smooth film on the sapphire substrate. The electrical conduction types and electrical properties of these films depended on the growth temperature, gases flow rates and substrates. The thermal conductivity of the film could be replaced by the substrate, so that the calculated thermoelectric figure-of-merit (Z) for the BP films on the SOI substrate was 10−4–10−3/K at 700–1000 K. Those on the sapphire substrate were 10−6–10−5/K for the direct growth and 10−5–10−4/K for the two-step growth at 700–900 K, indicating that the film on a sapphire by two-step growth would reduce the defect concentrations and promote the electrical conductivity.  相似文献   

14.
K. Mittag 《低温学》1973,13(2):94-99
The Kapitza conductance and thermal conductivity of ofhc-copper, niobium, ultra high purity aluminium, and of the aluminium alloy 6061 A1 have been measured in the temperature range from 1.3 to 2.1 K, yielding both quantities in the same steady state experiment. The temperature dependence of the Kapitza conductance, ho, was between T3.3 and T4.6 for the different samples, which is higher than the most frequently observed T3 dependence. The magnitude of ho for both ofhc-copper and aluminium agrees well at 1.9 K with an empirical prediction, but for niobium it is a factor of two to four lower than the value predicted. At 1.9 K, ho is higher by a factor of two for an annealed and chemically polished niobium sample than for an untreated sample. The thermal conductivity measured from ofhc-copper and 6061 A1 as in good agreement with the value calculated from the resistivity of these materials and the Wiedemann-Franz law. The measured thermal conductivity obtained for an annealed niobium sample is a factor of 2.8 higher than the highest published value.  相似文献   

15.
The results of X-ray and dilatometric measurements of the thermal expansion of bismuth telluride in the temperature range of 4.2–850 K have been critically analyzed. The joint statistical processing of the experimental data has been performed by the least squares method and the most reliable temperature dependences of the linear thermal expansion coefficients along the principal crystallographic axes α a and α c and the average linear coefficient [`(a)] L\bar \alpha _L , as well as the density of Bi2Te3, have been recommended. The results indicate that the linear thermal expansion coefficients along the directions parallel and perpendicular to the cleavage planes decrease with an increase in the temperature in a narrow temperature range. At temperatures below 298 K, the character of the temperature dependences of the linear thermal expansion coefficients of Bi2Te3 has been analyzed in terms of the anharmonicity of the chemical bonding forces in the layer structure and anisotropy of the elastic constants. In terms of the deviations of the composition of the Bi2Te3 compound from the stoichiometric one and the real (defect) structure of the compound, a model has been proposed to explain the minimum in the (α a T) dependence of Bi2Te3 near the melting temperature of bismuth. A method for calculating the temperature dependence of the linear thermal expansion coefficients of the anisotropic layer crystals using the data on the specific heat has been discussed, which provides good agreement of the calculated linear thermal expansion coefficients with the experimental data within the accuracy of the measurements of the linear thermal expansion coefficients.  相似文献   

16.
Ga–As–Fe composite films prepared by molecular beam epitaxy at 600°C on GaAs(100) substrates with the stacking sequence of [100-nm GaAs/50-nm Fe3Ga2− x As x /100-nm GaAs] exhibit the distinct photo-enhanced magnetization at room temperature. Transmission electron microscopy reveals the formation of metamagnetic Fe3Ga4 grains on the sample surface. Illumination power dependence of the enhanced magnetization has been carefully compared with the antiferromagnetic-type magnetization–temperature (M–T) curve (Neel temperature of T N = 340–390 K), from which we have discussed the existence of photon-mode photo-enhanced magnetization of some sort in addition with the enhancement due to the light-induced heating.  相似文献   

17.
Two nanocrystalline samples of TiC+SiC+20%C (sample 1) and Si3N4+Si(C,N)+Ti(C,N)+1%C (sample 2) were prepared by non-hydrolytic sol-gel method. The latter sample was produced from sample 1, by subjecting it to additional annealing at high temperature. XRD measurements showed the presence of aggregates of cubic SiC+TiC nanoparticles (10 to 30 nm in size). In both samples, a very narrow electron paramagnetic resonance (EPR) line originating from localized magnetic centers was centered at g eff??2. At T = 130 K, we registered the linewidths ??H pp = 1.41(2) G and ??H pp = 2.92(2) G for the sample without and with thermal annealing, respectively. For the non-annealed sample, the resonance line was fitted by a Lorentzian line in the low temperature range, and by a Dysonian line above 70 K, which indicates a significant change in electrical conductivity. Therefore, thermal annealing can significantly improve the transport properties of samples. An analysis of the temperature dependence of the EPR parameters (g-factor, linewidth, integrated intensity) showed that thermal annealing has a significant impact on the reorientation processes of localized magnetic centers.  相似文献   

18.
A composite nanomaterial composed of NbC nanocrystals, Al4C3 nanorods and carbon nanofibers as well as amorphous carbon was fabricated by arc-discharging a Nb3Al block as an anode in CH4 gas. The growth process of the NbC–Al4C3–C composite was deduced according to the microstructures of its components and the experimental conditions. NbC nanocrystals with non-stoichiometric chemical composition were in a cubic shape. As the decomposition product of the precursor of CH4 gas, carbon nanofibers were thought to be as templates, reacting with Al atoms, to form Al4C3 nanorods with a diameter of 15–40 nm. A thin layer of aluminum carbide oxide covered the surface of Al4C3 nanorods. The temperature dependence of the resistivity for the NbC–Al4C3–C composite was described by the variable-range-hopping (VRH) model between about 100 K and 300 K because of the strong localization of electrons by disorder in the carbon matrix. Below 100 K, the transport behaviors of the pellet deviated from the VRH model due to the conduction competition between the semi-conducting carbon matrix and metallic NbC nanocrystals.  相似文献   

19.
Bi4Ge3O12 single crystals were obtained using Czochralski growth method. Photoluminescence spectra were analyzed versus temperature from 12 to 295 K. Besides the previously observed emission bands at 610 and 820 nm, the new emission band at 475 nm was found by a careful temperature dependence measurement in the present study. The influence of basic and defect structure on the shape and position of the spectra versus temperature was discussed.  相似文献   

20.
The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17–0.43 K and 0.1–1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号