首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
摘要:脱硫是LF精炼的主要任务之一,基于酒钢S50C中高碳钢的开发,对S50C钢LF精炼过程硫容量、硫分配比的计算方法进行了研究。主要利用IMCT模型和KTH模型对LF精炼渣的渣 钢硫分配比进行计算,并通过工业试验对计算结果进行验证。结果表明,IMCT模型和KTH模型的计算值均能表现从LF到站到LF出站的过程中脱硫反应向着平衡的方向发展,但是KTH模型的计算结果更为准确。因此,对IMCT模型进行了修正,修正后的模型也能较为准确地计算出LF精炼末期硫分配比。最后计算了CaF2含量对硫容量的影响,结果显示CaF2含量对平衡硫容量的影响较小。  相似文献   

2.
 硫容量和硫平衡分配比是衡量炼钢过程中渣系脱硫能力的重要指标。通过光学碱度模型和KTH模型计算了五元渣系CaO SiO2 MgO Al2O3 FetO的硫容量,并与文献的实验测定值进行了比较。结果表明用KTH模型计算的硫容量比用光学碱度模型计算的硫容量更接近实验值,因此KTH模型可用来预测不同组元渣系的硫容量。还详细研究了硫容量和硫平衡分配比的影响因素,结果表明硫容量随炉渣碱度和温度的增加而增加,硫平衡分配比随着钢液中铝、碳、硅含量的增加而增加。  相似文献   

3.
王郢  郭佳  杨文  景财良  王新华 《钢铁》2009,44(1):36-0
 采用LD LF RH CC的工艺路线,出钢采用Al脱氧,造高碱度低氧化性精炼渣,生产高品质汽车用齿轮钢20CrMoH。使用KTH模型和推导硫分配比公式对生产过程的硫容量和硫的分配比进行了计算,将预测与实测的硫分配比进行对比;并对整个精炼过程的脱硫效果进行了分析。  相似文献   

4.
 通过热力学分析,建立了硫分配比与硫容量的关系,用热力学软件FactSage计算渣中Al2O3活度,用KTH模型计算渣的硫容量,对SPCC(一般用冷轧碳素钢薄板坯钢带)两个浇次10炉钢水在LF进站和出站时取钢、渣样以及测氧和温度,通过分析钢样和渣样成分以及生产检测数据,分析了温度、炉渣成分和钢水成分对LF精炼脱硫的影响规律。定义了硫分配比对钢液中溶解氧活度的急剧变化区(a[O]<4×10-6),在该区内硫分配比对钢液中溶解氧活度十分敏感,钢液中氧活度的增大导致硫分配比的迅速减小,温度升高,a[O]升高,不仅抵消了升温对脱硫反应轻微的促进作用,反而使硫分配比随温度升高而减小。LF精炼过程Al-O反应未达渣-钢平衡,实际[O]活度介于平衡计算值与Al2O3活度为1的计算值之间,故渣钢硫分配比也介于二者之间。精炼渣二元碱度升高则硫分配比增加,wCaO/wAl2O3在1.6~2.0时脱硫效果较好,硫分配比并不随[Al]s含量的增加而增大,所以用增加w[Al]s来脱硫效果并不明显。钢中夹杂铝(w[Al]t-w[Al]s)降低到10×10-6以下,硫分配比明显升高。  相似文献   

5.
为考察管线钢生产所用高碱度、高曼内斯曼指数的精炼渣脱硫能力,通过工业试验,对精炼过程精炼渣脱硫进行了研究。结果表明,萤石的加入使精炼渣在碱度、曼内斯曼指数均高于一般管线钢生产推荐值的情况下,仍具有很高的脱硫能力和良好的熔化、流动性能。通过对KTH硫容量模型计算得到的硫分配比进行修正,得到适用于某钢厂管线钢生产的硫分配比预测模型。模型计算值与实测值吻合度高,绝对误差范围在±5%之间的占85%。  相似文献   

6.
LF精炼过程中顶渣硫容量、分配比和脱硫率的确定   总被引:8,自引:1,他引:8  
为了确定LF精炼过程中顶渣的脱硫能力,通过对光学碱度的计算,得出了1627℃时CaO-SiO2-Al2O3-MgO(5%)渣系组成与硫容量的关系图。由硫容量、氧活度(与钢中溶解铝平衡值)计算出硫分配比,绘出了不同硫分配比时脱硫率与渣量的关系图,提出了一个由已知渣组成、渣量、钢液氧活度和硫含量来计算LF精炼过程中最大脱硫率的简便方法。  相似文献   

7.
根据钢厂100 t BOF-吹氩-LF-RH-Ca处理流程生产优质深冲(DDQ)级深冲热轧带钢SPHE(%:≤0.07C、≤0.03Si、0.20~0.30Mn、≤0.020P、≤0.010S、0.02~0.06Als)时Ca处理过程S含量过高的情况,通过KTH硫容量模型,分析了CaO/SiO2、Al2O3和MgO对精炼渣硫分配比LS的影响,建立了CaO-MgO-SiO2-Al2O3四元渣系脱硫模型,优化LF脱硫的精炼渣成分。结果表明,使用优化后的精炼渣(%:50CaO、6MgO、≤5SiO2、30~35Al2O3),LF精炼钢水的脱硫率≥80%。模型预测值与实测值误差为±5%的占80%。  相似文献   

8.
利用离子分子共存理论模型,对实际生产Q235B和SPHC-A钢的LF精炼时期硫容量进行了计算,并利用实测钢渣成分计算了实际测量的硫容量。结果表明,在Q235B和SPHC-A钢的LF精炼过程中,IMCT的硫容量计算值总是大于实际测量值,说明精炼时期钢渣反应并未达到平衡,Q235B钢的IMCT值与测量值相差较小,SPHC-A钢的IMCT值与测量值仍相差较大。出站时的硫容量IMCT值均较进站时更为接近平衡态。  相似文献   

9.
为了解决低钛高炉渣资源利用的问题,将低钛高炉渣进行脱硫后配加一定比例的CaO和Al_2O_3制备LF精炼脱硫渣,并采用热力学计算、实验仪器测量和模拟实验等方法对所制备的LF精炼渣的脱硫能力、熔化性能和脱硫效果进行了研究。低碱度(1.8)、低Al_2O_3(10.0%)的LF精炼脱硫渣的硫容量和硫分配比略低Ls,分别为0.0027、10.05。高碱度(≥3.5)、高Al_2O_3(≥15.0%)的LF精炼脱硫渣的硫容量和硫分配比Ls分别在0.0091和268.49以上,并且均具有较为适宜的熔化性能,黏度和熔点分别均在0.120 Pa·S和1517℃以下,满足LF炉精炼的需求。在FeSi或Al脱氧的条件下,钢水的脱硫率和硫分配比分别在51.43~85.54%和9.36~50.33之间,采用低钛高炉渣配加CaO、Al_2O_3制备LF精炼脱硫渣可以取得较好的脱硫效果。  相似文献   

10.
通过现场取样分析和热力学计算,评价了工业化生产GCr15轴承钢LF精炼工序的脱硫能力.分析了精炼温度、钢中酸溶铝含量、精炼渣的光学碱度对LF精炼过程硫分配比的影响.由于实际精炼过程中脱硫反应未达到平衡,实际测得的硫分配比低于理论计算值.得到了精炼温度为1 830~1 855 K,钢中酸溶铝的质量分数为0.020%~o.050%,精炼渣光学碱度在0.760~0.795范围内,精炼温度、钢中酸溶铝、渣的光学碱度及渣中Al2O3、SiO2含量对硫分配比影响的回归方程,该方程可作为实际生产条件下LF精炼工序脱硫能力的评价依据.根据回归方程,设计了改变精炼渣组成的3因素4水平正交实验,分析了精炼渣二元碱度R2及Al2O3和SiO2含量对硫分配比的影响,得出渣-钢间最优硫分配比的精炼渣组成(质量分数)为:CaO 55.11%,Al2O3 30%,SiO26.89%,MgO 8%,光学碱度为0.777.  相似文献   

11.
硫分配比在LF精炼渣成分优化中的应用   总被引:2,自引:0,他引:2  
选取Ohta和Suito的经验公式和光学碱度模型计算不同组成成分的四元渣系(Al2O3-CaO-MgO-SiO2)的硫容量与平衡状态下的硫分配比,分析渣中各组元成分变化和钢水温度变化对硫分配比的影响.通过计算首都钢铁集团公司某炼钢厂LF精炼渣的硫容量与硫分配比,来验证计算模型,优化精炼渣成分,以期获得最佳的脱硫效果.  相似文献   

12.
结合LF精炼渣的精炼效果,对渣洗工艺进行了优化。结果表明,采用白灰+铝渣球的渣洗工艺有效地改善了精炼渣的流动性,缩短了LF精炼的化渣时间,精炼渣的氧化性降低了7.96%,提高了初渣碱度,使得渣的平均熔点降低了117℃,降低了精炼渣的后续脱硫压力。采用KTH模型对氧活度和Al_2O_3含量对脱硫的影响进行了计算和分析。分析结果表明,采用铝渣球形式的渣洗工艺,通过降低渣中的氧化性,提升渣中Al_2O_3含量,增加渣钢间硫平衡分配比,不仅减少了后续铝耗,同时对前提脱硫带来一定好处,降低了后续的脱硫压力。  相似文献   

13.
MgO含量对CaO-Al_2O_3-SiO_2-MgO精炼渣脱硫能力的影响   总被引:1,自引:0,他引:1  
利用Factsage软件和KTH模型计算并分析了不同MgO含量时四元渣系CaO-Al2O3-SiO2-MgO的硫容量以及钢液(1 600 ℃)溶解铝质量分数为0.03 %时渣钢间硫平衡分配比的影响.得出控制炉渣成分为w(MgO)<8 %,w(CaO)=54 %~59 %,w(Al2O3)=25 %~30 %,w(SiO2)=6 %~10 %时,渣钢间硫平衡分配比能达到500以上,能满足快速冶炼超低硫钢的要求.  相似文献   

14.
储莹  郭汉杰  全永志 《特殊钢》2014,35(6):20-23
基于离子与分子共存理论,通过计算钢包炉(LF)精炼渣结构单元的质量作用浓度,建立了一种计算57CaO-10SiO2-8MgO-25Al2O3四元渣系与钢液硫分配比的热力学模型,计算得出1630℃LF精炼结束时,该渣系的渣-钢间的硫分配比LS=1115。通过9炉210 t双孔底吹氩LF渣样检测结果表明,当减去因现场和渣系的氧势等条件限制,所存在的定值系统偏差,该模型可有效反映工业生产的LF精炼渣硫分配比。  相似文献   

15.
钢液深脱硫精炼工艺的研究   总被引:9,自引:0,他引:9  
成国光  宋波  陆钢  王新华  赵沛 《钢铁》2001,36(3):21-22,25
通过以高温钼丝炉上测定硫在钢液与BaO-CaO-MgO-Al2O3-SiO2渣系之间的平衡分配,结果表明:在常用脱硫精炼渣系CaO-MgO-Al2O3-SiO2中加入BaO能显著提高渣的硫容量。并进一步在感应炉上进行了钢液深脱硫精炼工艺的实验,得出:含BaO脱硫粉剂比传统的CaO-CaF2脱硫剂具有更强的脱硫能力。  相似文献   

16.
通过从原料控硫、电炉出钢预脱硫、LF精炼单渣法深脱硫等方面采取措施对硫含量合理分配控制以及对VD真空处理及钙处理工艺进行优化,有效控制钢中超低硫的同时减轻LF精炼脱硫负荷、缩短LF精炼处理周期、提高Ca的收得率,达到稳定控制Ca/S、有效控制钢质纯净度和实现正常连浇的目的,形成生产Ca/S≥2.0的超低硫钢冶炼工艺技术。  相似文献   

17.
 利用光学碱度计算了1873 K时CaO SiO2 Al2O3 MgO(10%)四元精炼渣系的硫容量,从理论上分析了精炼高级别管线钢超低硫控制的工艺条件,绘制出精炼渣硫容量、渣中硫、钢中溶解氧与钢中硫的关系图。分析了某钢厂LF VD高级别管线钢生产工艺,LF1(LF炉精炼初期)、LF2(LF炉精炼末期)和VD精炼渣的氧化能力w((MnO+FeO))分别为11.92%、2.00%和1.10%,精炼渣碱度分别为3.195、6.250和7.600,精炼渣的曼内斯曼指数M(R/w(Al2O3))分别为0.09、0.17和0.18,精炼渣硫容量CS′分别为0.010、0.022和0.023。钢中硫的质量分数从LF1的80×10-6,降低到LF2的(20~30)×10-6 ,并稳定在VD末期的20×10-6以下,与理论计算相符。  相似文献   

18.
首先简述了现有炉渣硫容量的预测模型,包括光学碱度模型和皇家工学院(kungliga tekniska h9gskolan,简称KTH)模型等,同时提出利用FactSage软件计算炉渣的硫容量,并与前两种模型进行对比。结果表明,这3种模型都能较好地预测RH顶渣的硫容量;利用FactSage软件对超低碳钢钢-渣间的硫分配比进行计算,计算结果与检测结果非常接近。因此,FactSage软件可以用来预测超低碳弱脱氧钢RH(Ruhrstahl-Hereaeus)顶渣的硫容量和钢-渣间的硫分配比,并指导生产实践。同时指出,对于超低碳钢的生产,增大RH顶渣中w(CaO)/w(Al_2O_3)比值,降低渣中(FeO+MnO)和SiO_2的质量分数,可以将钢液中硫质量分数控制在较低水平。  相似文献   

19.
结合某低碳钢的LF精炼实际,分析了CaO-CaF_2精炼渣条件下精炼渣量、渣中CaF_2含量、吨钢吹氩量对脱硫及LF精炼前期吹氩流量对表观脱硫系数(KS)的影响,提出了一种LF经济型脱硫工艺。结果表明:LF精炼前期,随着底吹氩流量增加,KS逐渐增大。吨钢吹氩量为0.26~0.28 m~3/t、渣量为22 kg/t、w(%CaF_2)为26%~28%时,脱硫率最高,脱硫效果最佳。  相似文献   

20.
采用热力学分析的方法研究了300t转炉渣钢间脱硫反应。发现渣中氧传质控制转炉炼钢脱硫反应,转炉终点渣钢间硫分配比与(FeO)-O-S热力学模型计算结果相符,说明脱硫反应接近平衡。定量分析结果表明,转炉渣钢间硫分配比主要受碱度、FeO含量、MgO含量及温度的影响。根据生产数据回归得到了对生产指导性较强的渣钢间硫分配比计算...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号