首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用缩尺比为1∶20风洞试验刚性模型,以风向角和屋面坡角为变量,针对单体低矮建筑及罩棚与低矮建筑组合而成的罩棚式低矮建筑的屋面局部极值风压展开风洞试验研究,深入探讨罩棚结构对与之配套的低矮建筑屋面迎风屋檐、屋脊及角部局部测点极值风压系数差的影响。结果表明:在垂直屋脊来流风向(风向角0°)下罩棚对低矮建筑迎风屋檐处测点极小值风压系数差的影响随着屋面坡角的增大而减小;随着风向角的改变,迎风屋面靠山墙边缘及角部区域测点极大值、极小值风压系数差受罩棚的影响增大,且45°风向角下达到最大;当来流风向平行于屋檐方向(风向角90°)时,随着屋面坡角的变化,罩棚结构对低矮房屋迎风屋檐、屋脊、角部等局部易损区测点极大值、极小值风压系数差的影响最小。屋面坡角为45°时,随着风向角的改变,屋面局部测点极小值风压系数差受罩棚的影响较其他屋面坡角的小。  相似文献   

2.
基于缩尺比为1∶20的平屋面低矮房屋风洞试验模型,在A、B、C三类不同地貌条件下,以风向角为变量,研究地貌对低矮建筑屋面局部平均、脉动以及极值风压分布的影响。试验结果表明:屋面局部区域受风向角影响较大并呈现一定规律性。迎风屋面边沿区域以及角部区域受风向影响最为明显且风压大于其他区域;在斜风向45°风向角时,迎风屋面边沿区域角部测点平均、脉动、极值风压系数最大,为该类房屋最不利风向角;不同地貌对低矮房屋屋面平均风压系数影响较小,对脉动、极值风向系数影响较大。在0°、90°风向角时迎风屋面边沿平均风压系数受地貌影响较大,在斜风向下地貌的改变对屋面平均风压系数影响不大;随湍流度的增大屋面平均、脉动、极值风压系数绝对值也相应增大。  相似文献   

3.
采用缩尺比为1∶20风洞试验刚性模型,以风向角及屋面坡角为变量,针对单体低矮建筑及罩棚与低矮建筑组合而成的罩棚式低矮建筑屋面局部风载展开风洞试验研究,采用风压系数差深入探讨B类地貌下罩棚结构对配套低矮建筑屋面迎风屋沿、屋脊及屋面角部等局部测点风压影响变化规律。结果表明:不同风向下罩棚对低矮建筑迎风屋沿处风压的影响随着屋面坡角的增大而减小,对背风屋面各分区的影响较小。随着风向角的改变,迎风屋面靠山墙边缘及角部区域受罩棚影响呈增大趋势。45°斜风向下,平屋面(β=0°)迎风屋沿测点6风压系数变化最大,风压系数差为-2.01。当来流平行于屋沿方向时,罩棚结构对迎风屋沿、屋脊、屋面角部等易损区的风压系数随坡角的变化影响最小。  相似文献   

4.
为获得低矮房屋屋面局部平均风压的分布规律,将体型比为1.5∶1∶1的低矮房屋屋面划分成若干典型区域并进行数值模拟研究。数值模拟结果与风洞试验结果对比表明,采用两种研究手段分析的结果吻合较好,从而验证了数值模拟技术在分析低矮房屋表面风压的可靠性。基于数值模拟,分析了七类不同屋面坡角低矮房屋在典型风向角下屋面局部区域平均风压的分布规律。结果表明:屋面局部平均风压随风向角改变而变化明显,且表现出一定的规律性;0°风向角下,靠山墙B,E区域形成局部高吸力区;60°风向角下,迎风屋檐A区及屋角J区测点平均风压系数随坡角的增大有明显递减趋势,屋脊C,D区测点平均风压系数随坡角的增大呈现出先增大后递减的趋势;90°风向角下,迎风屋檐A区及屋角J区各测点平均风压在45°坡角时均为正压。研究结果可为我国沿海多发台风地区低矮房屋的抗台风设计提供依据。  相似文献   

5.
针对4种不同坡角、缩尺比为1∶20的双坡低矮房屋风洞试验刚性模型,以风向角、坡角为变量,重点研究均匀湍流风场下坡角影响双坡低矮房屋屋面区域极值风压的分布规律。研究结果表明:0°~45°风向下坡角对双坡低矮房屋屋面易损区域风压特性影响显著,60°~90°风向下不同坡角房屋易损区域风压特性变化趋势相近,其中30°坡角房屋屋面所受风荷载较小。  相似文献   

6.
低矮房屋迎风屋面局部风压特性研究   总被引:1,自引:0,他引:1  
基于尺寸比为1.5:1:1(长:宽:高)的低矮房屋的风洞试验数据,分析了9类不同坡角的低矮房屋在5个不同风向的风场环境下,迎风屋面屋檐、屋脊等局部区域测点的平均、脉动及峰值风压系数.通过对比低矮房屋在不同坡角、不同风向作用下屋面的风压变化规律,总结了坡角及风向对低矮房屋屋面局部风压的影响规律.结果表明,低矮房屋在45....  相似文献   

7.
对平屋面低矮建筑进行1∶25缩尺刚性模型测压风洞试验,研究了无女儿墙工况和4种不同高度女儿墙的平屋面低矮建筑的风荷载分布规律。无女儿墙的平屋面主要承受风吸力作用,斜风向锥形涡诱导的最不利吸力区域为屋面迎风边缘角部区域,为全风向下最不利区域。女儿墙的存在可明显减小屋面的平均风吸力和极值风吸力,平均风吸力减小幅度可达150%,同时最不利平均风压系数和极小值风压系数的出现位置逐渐远离了屋面角部区域;随着女儿墙高度的增加,极值风吸力进一步减小,极值风压力增大,最大的极大值风压系数出现在尾流区;采取分区的方式给出了不同女儿墙高度的屋面体型系数建议取值。  相似文献   

8.
对复杂体型的平面T形低矮双坡屋面房屋的风荷载特性进行了风洞试验研究,得到了屋面风压系数以及各屋面体型系数的变化规律;采用计算流体力学软件FLUENT建立了数值风洞模型,在数值分析结果与风洞试验结果吻合良好的基础上,对影响屋面平均风压系数及体型系数的风攻角、屋面坡角、檐口高度、房屋几何尺寸和屋面形式等参数进行了详细分析。结果表明:屋面坡角和风攻角对屋面风压系数的影响显著;在不同风攻角作用下,迎风屋面屋檐及屋脊附近形成较高负压;当屋面处于背风区域时,风压系数分布较均匀;四坡屋面坡角为30°时屋脊背风区域易形成较大负压,局部更易遭受破坏。  相似文献   

9.
采用缩尺比为1∶20的双坡屋面低矮房屋风洞试验刚性模型,以湍流积分尺度为变量,研究湍流积分尺度影响低矮房屋屋面局部区域平均、脉动、极值风压分布特征和变化规律。研究发现,湍流积分尺度的改变对平均风压系数影响不明显,对脉动、极值风压系数影响较大,且随湍流积分尺度的增大,屋面测点脉动、极值风压系数绝对值增大。当来流垂直于屋面长边时,在迎风屋面,距迎风屋檐越远,平均风压系数绝对值越小,山墙和角部区域脉动风压系数越小,而迎风屋面中心区域脉动风压系数越大。在背风屋面,远离屋脊测点的平均、脉动风压系数绝对值逐渐越小。双坡屋面低矮房屋在迎风屋檐及山墙区域风压相对较大,这些局部区域在强风作用下更易受到破坏。  相似文献   

10.
基于大气边界层基本理论和流体动力学基本原理,采用FLUENT软件对平面L形低矮房屋风压分布特性进行了数值模拟研究。将数值计算结果与风洞试验结果对比分析,结果吻合良好,表明数值模拟方法是合理可行的。通过数值模拟,详细分析了风向角、屋面坡度、房屋翼长、檐口高度和屋面形式等参数对平面L形低矮房屋外表面平均风压系数分布规律及体型系数的影响。结果表明:风向角与屋面坡度是影响屋面的风压系数分布与体型系数的最主要因素;最不利负压的位置随风向角的改变而不断变化,但往往出现在迎风屋面屋脊及屋檐区域;迎风屋面最不利负压随屋面坡度的增加逐渐减小,背风屋面风压系数分布相对均匀;四坡屋面阳屋脊较多,其背风区往往形成高负压区,这些区域更容易遭受风灾破坏。  相似文献   

11.
通过风洞试验研究了地貌类型和建筑物平面长宽比对平屋面建筑平均风压系数、均方根风压系数、极值风压系数、屋面平均升力系数的影响规律,研究结果表明:地貌类型对平均风压系数影响较小,对均方根风压系数、极值风压系数影响显著,对于与模型短边正交的风向角下,C类地貌下典型断面迎风分离区均方根风压系数最大值约为A类地貌的1.5倍,A、B、C类地貌条件下典型断面的再附点距迎风前缘的距离分别为0.7H、0.4H、0.3H(H为模型高度);建筑平面长宽比对风压系数的影响较小,增大沿风向方向的建筑物长度,屋面更多区域处于气流再附后区域,平均升力系数幅值减小;地貌类型和长宽比对屋面角部区域全风向极值风压系数影响较大,对中间区域影响较小,对于角部区域,C类地貌下的极值风压系数较A类和B类地貌的明显偏大,长宽比为2.5模型的极值风压系数明显较长宽比为1.5和2.0模型的大,增幅均在20%左右。  相似文献   

12.
结合低层建筑风荷载特性研究现状,采用流体力学软件Fluent14.5,对几何尺寸为24 m×16 m×4 m的低层四坡屋面房屋模型的风压分布规律进行数值模拟研究,最终选取变化规律与东京工艺大学风洞试验结果较吻合的重整化群k-e湍流模型进行后续研究。在此基础上,深入研究了不同风向角下低层四坡屋面坡角、风向角以及相邻房屋风致干扰对风压分布规律的影响,根据各工况下风压系数的变化,总结各因素影响规律得出:(1)较高的负平均风压系数总是出现在迎风方向的气流分离面附近,在斜风向角下,屋面屋脊局部最大风压达到极值;(2)相邻建筑干扰产生的遮挡效应和狭缝效应会使屋面风压产生复杂变化,设计时应考虑这种影响。  相似文献   

13.
对一预制舱变电站项目低矮建筑群中的综合舱进行了屋面角区无构件、附加新型三维曲面构件及传统女儿墙构件3种工况的风洞测压对比试验;选取其中0°,90°,30°三个典型风向角下综合舱屋面角区的峰值风压系数进行分析。结果表明:无附加构件时,3个风向角下综合舱屋面角区局部的峰值负压均较大,其中30°风向角下个别测点峰值负压系数极值可达-12.0,对围护结构风荷载设计最为不利;曲面构件及女儿墙构件均能不同程度减小屋面角区的风荷载,其中在30°风向角下,两者分别能将屋面角区几个风敏感测点处峰值负压系数的平均值减小为无构件工况下的46%和55%,表明本文设计的三维曲面附加构件效果相对较好,能更有效优化这一类低矮建筑屋面角区局部不利风荷载。  相似文献   

14.
低矮房屋屋面风压的实测及分析   总被引:3,自引:0,他引:3  
通过对全尺寸低矮房屋的现场实测,分析了不同风向角的屋面风压系数的分布规律,同时对迎风向屋面角部和边缘的加密测点实测数据进行研究,总结了不同风场下该区域局部风压峰值的分布及其脉动规律。结果表明,迎风向屋沿局部风压远比屋面平均风压高,且屋面最大局部风压在斜风向产生,验证了该区域风洞试验结果的有效性、可靠性,并得到了一些有价值的结论,为改进低矮房屋的设计提供了依据。  相似文献   

15.
基于缩尺比为1∶40低矮建筑在不同地貌条件下的风洞试验,研究因易损区局部风致破坏进而诱发低矮建筑屋面整体风毁的风载特性,分析屋面瞬间开孔所致瞬态峰值内压过冲效应,研究稳态阶段的内压分布特征及净风压极值分布规律。结果表明:建筑上游风场湍流度越大,屋面局部瞬间破坏所致过冲效应越明显;地貌对屋面迎风角部瞬间破坏所致过冲较分布区域的影响显著;屋面不同的区域开孔所致内压分布均匀,但内压值随风场湍流度增大呈增大趋势。风致建筑破坏所致内压系数试验值比我国现行荷载规范中建议取值大;屋面局部瞬毁进而诱发再次破坏主要分布在已损孔洞边缘及山墙部分。  相似文献   

16.
采用阻尼耗能抗风装置以减小强风对低矮双坡房屋的破坏,对无耗能抗风装置、设置有女儿墙及耗能抗风装置和仅有女儿墙3种屋面的村镇低矮房屋进行了风洞试验,以研究阻尼耗能抗风装置对低矮双坡屋面风压的影响。试验结果表明:耗能抗风装置对减小屋面的最不利负压效果明显,迎风屋面为主要破坏区域,如屋脊附近处、屋面与山墙接触边缘处等,平均负风压系数绝对值减小幅度可达50%;耗能抗风装置对于背风屋面的风压影响也较明显,平均负风压系数绝对值减小幅度最多可达15%。采用有限元软件对风场中低矮双坡屋面的风压进行了数值模拟,得到的屋面风压分布规律与风洞试验结果一致。  相似文献   

17.
戴益民  王相军  刘也 《建筑结构》2015,(2):95-99,88
为研究开洞低矮房屋在台风环境下的破坏机理,基于ANSYS软件采用SST k-ω湍流模型对低矮房屋封闭、单一洞口的屋面风压分布及变化规律进行数值模拟研究,与全尺模型实测及风洞试验结果对比表明:数值模拟结果与实测及风洞试验结果基本吻合,验证了采用SSTk-ω湍流模型研究低矮房屋表面风压的可靠性;湍流度对平均内风压系数的影响随开洞位置不同而不同,屋顶开洞时,随着湍流度的增大,平均内风压系数的绝对值变小,屋面平均净风压系数增大;屋沿开洞时,随着湍流度的增大,平均内风压系数的绝对值增大,但平均净风压系数的变化不大;风向角对整体屋面平均内风压系数的影响显著,尤其是在开洞边缘区和迎风角部区域。  相似文献   

18.
对低层四坡屋面房屋模型进行了风洞试验,给出了屋面平均和脉动风压系数等值线和各面体型系数的变化规律。采用计算流体力学软件FLUENT,对大气边界层中的试验模型进行了三维定常风场的数值模拟,并将数值模拟结果与试验结果进行了比较分析,变化规律吻合较好。在此基础上,深入研究了不同风向角下房屋屋面坡度、挑檐长度、檐口高度和长宽比对低层四坡屋面平均风压系数及各面体型系数的影响,并提出了各面体型系数的建议取值。研究结果表明:数值风洞能够较好地反映低层四坡屋面房屋的风荷载特性;各参数对屋面风压系数的影响程度各异,与风向角密切相关;屋面坡度对屋面风压分布和大小有明显的影响;四坡屋面屋脊背后容易形成较高的局部负压区域;当屋面坡度小于35°时,四坡屋面房屋迎风屋面的体型系数绝对值大于相应双坡屋面房屋。该结论和提出的体型系数建议取值为低层四坡屋面房屋的工程抗风设计提供了可靠依据。  相似文献   

19.
对一预制舱变电站项目低矮建筑群中的综合舱建立了屋面角区无构件、附加新型三维曲面构件及传统女儿墙构件三种工况的数值风洞模型,采用SST k-ω模型模拟计算两个典型风向角下综合舱屋面角区的平均风压系数,并与风洞试验结果进行对比分析。结果表明:0°风向下,曲面构件与女儿墙构件均能有效减小屋面角区的平均风压,且效果相当;30°斜风来流风向下,曲面构件和女儿墙构件分别能将屋面角区几个风敏感测点处的平均风压系数均值减小为无构件工况下的67%和72%,表明曲面构件相比女儿墙构件,对优化屋面角区的最不利风荷载相对效果更好;虽然不同工况下屋面角区平均风压系数的数值模拟结果略小,但整体上和风洞试验规律一致,表明数值风洞方法对研究这类问题具有较好的指导作用。  相似文献   

20.
不同排列方式平屋面建筑群极值风荷载干扰效应影响研究   总被引:1,自引:0,他引:1  
通过风洞试验,采用单因素轮换法,研究了建筑物排数、列数及面积密度对平屋面低矮建筑群各位置建筑物的屋面极值风压系数干扰效应的影响规律。试验结果表明:屋面大部分区域极值风荷载干扰效应以遮挡效应为主,中心建筑物的屋面各区域、边缘和角部建筑物的角部和中心屋面区域遮挡效应尤为显著,屋面边缘中间区域出现了放大效应,最大增幅达到14%;增加建筑物排数或列数,对角部和边缘建筑物影响较大,其屋面角部和中心区域极值风压缩减效应进一步增强;3排3列建筑群中,中心建筑物屋面各区以及角部和边缘建筑物靠近建筑群中心的屋面角部区域极值风压均对建筑面积密度较为敏感,干扰因子随建筑面积密度增加而线性减小,比例系数接近-1. 0,而角部建筑物和边缘建筑物中远离建筑群中心的屋面角部区域极值风压对建筑面积密度并不敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号