共查询到20条相似文献,搜索用时 0 毫秒
1.
摘要:通过连续冷却实验研究了Nb Ti微碳深冲双相钢在不同冷却速率下的显微组织变化规律。并结合显微组织、热膨胀曲线以及实验钢的硬度值绘制出实验钢的CCT曲线。结果表明,实验钢的CCT曲线由铁素体、珠光体与贝氏体区组成,其中铁素体和贝氏体的区域较大,覆盖冷却速度范围较广。实验冷却速率下未出现马氏体组织。在05~1℃/s的慢冷速下,组织由铁素体和珠光体组成;当冷速增加至3℃/s时,贝氏体开始出现,珠光体消失。当冷速在5~10℃/s范围内时,获得铁素体+贝氏体双相组织;当冷速大于10℃/s时,铁素体相变消失,此时为纯贝氏体转变。热处理过程中若想获得一定量的马氏体组织,退火温度宜设置在820~900℃双相区较低温度范围,使合金元素充分富集于少量奥氏体中,在随后冷却过程中此奥氏体转变为马氏体组织。 相似文献
2.
3.
热轧冷却工艺对Nb-Ti微合金双相钢组织和性能的影响 总被引:2,自引:0,他引:2
研究了热轧后空冷(800-850℃→750℃)+水冷(750℃→300~180℃)的两段式和水冷(782℃→760℃)+空冷(760℃→713℃)+水冷(713℃→414℃)三段式冷却方式对双相钢(%:0.08C、1.02Mn、0.22Si、0.02Nb、0.01Ti)组织和机械性能的影响。结果表明,采用两段式冷却方式可得到铁素体+分散的板条马氏体组织,并使铁素体尺寸达5.5μm,钢的屈服强度为345~365 MPa,抗拉强度为565~575 MPa、屈强比为0.60~0.65,优于三段式冷却方式轧制的双相钢。 相似文献
4.
5.
微合金高强度钢连续冷却转变及显微组织研究 总被引:3,自引:0,他引:3
以国内某厂新型微合金高强度钢的开发研究为背景,在THERMECMASTOR-Z热模拟试验机上对试验钢种进行了不同变形程度、变形速率和冷却速度等工艺条件下的热模拟实验.分析比较了不同变形工艺参数对微合金高强度钢相变及组织的影响.实验结果表明,提高轧后冷却速度使 Ar3温度降低;高温加热抑制相变,变形促进相变;变形速率越大,相变开始温度越高,变形程度越大,相变开始温度越高.增大变形程度和轧后快速冷却有助于铁素体晶粒的细化和减少珠光体的含量.试验钢种的γ+α两相区的温度范围大于130℃. 相似文献
6.
7.
8.
9.
采用Formastor-F型全自动相变仪测定610 MPa水电用钢的连续冷却转变曲线(CCT曲线),研究了该钢在不同冷却速度下的过冷奥氏体的组织转变过程及转变产物的组织形态,结果表明,实验钢冷却速度低于5℃/s时,转变产物为F+P,冷却速度高于5℃/s时,出现贝氏体组织,随着冷却速度的加快,贝氏体逐渐增多,珠光体逐渐减少,冷却速度达到20℃/s时,珠光体消失。冷却速度大于150℃/s时,转变产物主要为马氏体。 相似文献
10.
11.
利用热模拟试验机、OM、TEM等试验设备,研究了Ti-Nb微合金化高速护栏钢的连续冷却组织转变规律,建立了试验钢的CCT曲线。研究结果表明:当冷速为0.5℃/s时,试验钢中的奥氏体发生铁素体-珠光体相变;当冷速大于1℃/s时,开始发生贝氏体相变;当冷速为10~20℃/s时,既发生铁素体-贝氏体相变又发生马氏体相变;当冷速≥30℃/s时,发生贝氏体-马氏体的相变。随着冷速的增加,试验钢的硬度也随之增大。在不同冷速下钢中均存在(Ti, Nb)C析出物,且在钢中呈弥散分布,在低冷速条件下,钢中析出物的体积分数较大,尺寸较小,具有一定的析出强化效果。 相似文献
12.
0.06C-0.6Si-1.5Mn-0.6Cr双相钢的连续冷却转变 总被引:2,自引:0,他引:2
在Gleeble-1500热应力/应变模拟机上测定了0.06C-0.6Si-1.5Mn-0.6Cr双相钢的未变形和变形连续冷却转变曲线(CCT曲线).利用光学显微镜对组织进行了观察,利用维氏硬度计对金相组织进行了测定.结果表明,当冷却速度小于10℃/s时,随着冷却速度的增加,贝氏体体积分数和宏观维氏硬度值增加都较为明显;而当冷却速度在10—20℃/s范围内时,无论变形还是未变形时贝氏体体积分数和硬度的变化都趋于平缓.由CCT曲线可知,实验钢经变形后奥氏体向铁素体转变温度在780~550℃之间,在2—20℃/s范围内可以获得贝氏体组织. 相似文献
13.
09CuPCrNiMoNb微合金化热轧耐候双相钢 总被引:1,自引:0,他引:1
测定了09CuPCrNi经Mo和Mo、Nb微合金化的两种热轧耐候双相钢0.11C-0.27Cu-0.60Cr-0.20Ni-0.41Mo和0.07C-0.29Cu-0.53Cr-0.22Ni-0.42Mo-0.03Nb的连续冷却转变动力学(CCT)曲线。Mo微合金化钢CCT曲线中铁素体转变区与贝氏体转变区之间有60—80℃宽的奥氏体亚稳区;MoNb微合金化钢CCT曲线没有奥氏体亚稳区。这两种钢通过控轧控冷工艺均可获得铁素体 马氏体双相组织。 相似文献
14.
15.
采用DIL805A膨胀仪测定了09MnNiDR钢在不同冷却速率下连续冷却转变的膨胀曲线,结合金相-硬度法,绘制了该钢种的连续冷却转变曲线。结果表明:钢的临界相变点为Ac1=739℃,Ac3=890℃。冷却速率为0.1~2℃/s时,组织为铁素体+珠光体;冷却速率为3℃/s时,组织为粒状贝氏体;冷却速率超过10℃/s时开始生成板条状贝氏体;冷却速率达到30℃/s时,粒状贝氏体消失,开始生成马氏体,随着冷却速率的提高,马氏体含量升高;当冷却速率为50℃/s时,组织几乎全部转变为马氏体。为满足钢种组织为铁素体+珠光体的要求,需控制冷却速率低于2℃/s。 相似文献
16.
17.
采用Formastor-F型全自动相变仪测定了一种空冷贝氏体钢的静态CCT曲线,并研究了冷却速度对显微组织、硬度的影响。结果表明:当0.04℃/s≤冷速0.35℃/s,室温组织为贝氏体;当0.35℃/s≤冷速1℃/s时,室温组织为贝氏体/马氏体复相组织;当冷速≥1℃/s时,室温组织为马氏体;当冷速小于1℃/s时,硬度呈线性增长,当冷速在1~10℃/s时,硬度基本保持不变,大约为600 HV。 相似文献
18.
19.
通过模拟4mm热轧板的最后4道精轧工序,测定了06Mn2SiCrB热轧双相钢的动、静态CCT曲线,对比得出:D 未再结晶区变形,将产生明显的形变诱导作用,使CCT曲线中铁素体析出线向左上方移动,珠光体析出线向右上方移动,贝氏体析出终了线左移,钢的CCT曲线上铁素体、马氏体二相分离型相变的冷却速度范围变宽。 相似文献
20.
采用光学显微镜与扫描电镜观察分析了实验钢冷轧组织在连续退火过程中的再结晶与相变规律,研究了过时效回火对双相钢显微组织的影响.实验表明,在连续退火初期的加热过程中,在600~720℃大量进行再结晶.加热速度对再结晶行为有较大影响,以10℃/s加热,再结晶将持续到双相区.珠光体在低于720℃的加热过程中变化不明显,而铁素体晶界与晶内出现球状碳化物颗粒.双相区退火过程中,奥氏体首先在珠光体处形成,原铁素体晶界与晶内的碳化物颗粒也形成奥氏体岛.800℃保温后缓慢冷却至630~680℃可以得到合理比例的双相钢组织.当过时效温度大于300℃,马氏体分解,碳化物颗粒析出,将对双相钢性能产生不良影响. 相似文献