首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过取样检测结合热力学计算,分析了钙处理对成品无取向硅钢中夹杂物特征及硫化物夹杂的析出机制的影响。结果表明,钢中尺寸大于3μm的有害夹杂物主要是AlN、MgO-SiO2、CaO-Al2O3-SiO2类复合夹杂物及其与MgS、MnS、CaS的复合析出物。钙处理钢中没有检测到单独的Al2O3、SiO2及铝酸钙类夹杂物。钙处理钢中形成的液态3CaO·Al2O3、MgO·SiO2和Al2O3夹杂物被精炼渣吸收,改性去除了钢中大尺寸Al2O3夹杂物。钙处理钢中尺寸大于3μm的氧化物夹杂主要是含CaO和(或)CaS的Al2O3-SiO2类夹杂。硫化物在MgO-SiO2类氧化物表面的析出有利于其形貌趋于规则。钢中不同形貌的AlN夹杂物呈多尺度分布,钙处理对大尺寸AlN的析出特性影响不大。氧硫化物及其与AlN复合析出并定向长大的过程,与其晶体结构有关。氧化物夹杂的硫容量决定了其与硫复合的难易程度。钙处理钢中CaS在氧化物表面呈局部包裹析出和局部吸附析出。  相似文献   

2.
非金属夹杂物的类型、数量、尺寸对齿轮钢的疲劳性能具有重要影响。为了明确20CrMnTiH齿轮钢在凝固和冷却过程中夹杂物的转变和析出行为,通过Aspex自动扫描电镜对齿轮钢连铸过程中非金属夹杂物的类型、数量、尺寸等进行系统分析。研究发现,中间包内钢液中氧化物夹杂的主要类型为Al_2O_3-CaO-MgO和Al_2O_3-CaO-CaS型,铸坯中氧化物夹杂的主要类型转变为Al_2O_3-MgO和Al_2O_3-CaS型。齿轮钢钢液在凝固和冷却过程氧化物夹杂中CaO向CaS转变,夹杂物的数密度降低,平均尺寸略有增加。通过热力学软件FactSage 7.1计算了中间包内钢液在凝固和冷却过程中夹杂物的形成和转变,对齿轮钢在凝固和冷却过程夹杂物的转变提供了理论依据。  相似文献   

3.
齿轮是机械传动的关键结构部件,为了改善齿轮的服役性能,提高疲劳寿命,需要清楚齿轮钢中的夹杂物类型、数量、尺寸、分布。采用夹杂物自动扫描仪、氧含量分析手段、扫描电镜对齿轮钢锻件不同位置进行夹杂物评估。结果表明:铸件中心位置TO质量分数较高,为10×10~(-6),对应小尺寸夹杂物数量较多,而大尺寸夹杂物在关键区域的分布较多。钢中氧化物夹杂主要为Al_2O_3、Al_2O_3复合类的尖晶石和钙铝酸盐复合夹杂物,且尺寸较大,分布不均匀,对齿轮钢关键区域的影响较大。钢中硫化物夹杂分布均匀,尺寸较小,热力学计算表明,该类夹杂在凝固过程中凝固率g0.44时,MnS开始析出,通过控制硫化物夹杂析出及分布有助于改善齿轮钢质量。  相似文献   

4.
程林  杨文  李树森  任英  张立峰 《炼钢》2019,35(6):60-66
对"BOF→LF→RH→钙处理→CC"工艺生产X70管线钢过程的夹杂物行为演变进行了研究。发现LF精炼过程夹杂物由多面体Al_2O_3转变为球形的MgO-Al_2O_3-CaO-CaS复合夹杂。RH精炼过程夹杂物成分变化不大,但是夹杂物数量和尺寸都减小。钙处理后,夹杂物中的CaO和CaS含量增加,w(CaO)/w(Al_2O_3)增大,平均成分偏离低熔点区。在连铸过程由于二次氧化导致钢中Al_s和T.Ca含量降低,同时中间包夹杂物中CaO和CaS含量有所降低,夹杂物数密度和最大尺寸都有所增加,应加强浇铸过程的保护浇铸,以更好地保证钙处理效果。由于降温过程钢-夹杂物之间平衡的移动,夹杂物由中间包中液态的CaO-Al_2O_3转变为铸坯中的以Al_2O_3-CaS和MgO-Al_2O_3类型为主的高熔点夹杂物。  相似文献   

5.
非金属夹杂物对轴承钢性能有较大危害,全面掌握钢中夹杂物的信息对提高轴承钢质量至关重要。实验采用ASPEX扫描电镜检测和水溶液电解萃取相结合的方法检测了超洁净轴承钢中夹杂物颗粒的尺寸、分布、类型、原始三维形貌等信息,并且对比了两种检测方法。结果表明,两种方法都检测出该超洁净钢中夹杂物类型包括硫化物、氧化物、硫化物和氧化物的复合型夹杂物以及钛的化合物,其中大部分夹杂物是硫化物,其次是氧化物和硫化物的复合类夹杂物,颗粒尺寸多小于5μm。这两种方法在检测夹杂物类型和尺寸方面的结果是一致的,且均可靠。在大尺寸夹杂物检测方面,两种方法都检测到大尺寸的CaO夹杂物,而电解萃取的方法进一步检测到约18μm的SiO_2·Al_2O_3复合氧化物夹杂,因此电解萃取法对于数量稀少的大尺寸夹杂物的检测更为有效和可靠。  相似文献   

6.
Q345D钢中含钙类夹杂物的演变和生成机理分析   总被引:2,自引:0,他引:2  
音正元  张立峰  李超  杨文  任英 《钢铁》2020,55(11):47-56
 通过工业实践研究Q345D钢生产过程含钙类夹杂物的演变和生成机理,并结合热力学计算研究了夹杂物凝固过程的转变机理。结果表明,钢中钙主要来源于VD真空冶炼和钙处理;真空前夹杂物CaO含量很低,破空后夹杂物CaO含量开始升高;之后由于钙处理,夹杂物CaO含量进一步升高。钢液冷却凝固过程中夹杂物发生明显转变,铸坯夹杂物中CaO含量明显降低,CaS含量显著升高,其结果与FactSage热力学计算结果一致。铸坯大尺寸含钙夹杂物主要分为钙铝酸盐、CaS包裹钙铝酸盐、CaS包裹钙铝酸盐且中间析出尖晶石、CaS和Al2O3黏结型及CaS和尖晶石黏结型;统计表明,铸坯中夹杂物尺寸越大,夹杂物中CaO含量越高,大尺寸夹杂物中CaS含量极低。  相似文献   

7.
宗震宇  张峰 《钢铁钒钛》2013,34(1):58-63
结合工业化生产的无取向硅钢,进行了RH精炼喂CaSi线去除钢中的非金属夹杂物试验研究.针对不同的钙处理条件,分析了CaS夹杂生成热力学,观察了夹杂物的形貌和尺寸分布,确定了夹杂物的类型、数量,探讨了钙处理后钢中夹杂物的变化规律.结果表明,本试验条件下,钙处理可以有效抑制MnS、AlN夹杂物的生成,有效促进钢中微细夹杂物的聚合、上浮、去除,钢质纯净度明显提高.经过合适的钙处理后,钢中的夹杂物以独立存在的CaO为主,同时有少量含CaO、SiO2 、MgO的复合夹杂,没有发现CaS夹杂存在.这部分夹杂物的尺寸集中分布在2~20μm,数量约为1.8×105 个/mm3.  相似文献   

8.
利用夹杂物自动分析系统在实验室中研究了钢中Ce含量对热影响区夹杂物演化的作用。结果表明,随着钢中Ce含量的增加,夹杂物的数量密度、平均尺寸和以Al_2O_3为核心的复合夹杂物比例都减少,夹杂物中Ce的含量和含Ce夹杂物的比例都增加,典型夹杂物核心由Al_2O_3+Ce_2O_3变为Ti_2O_3+Ce_2O_3,外部都析出MnS。当钢中Ce质量分数大于140×10~(-6)时,出现以Ti-Ce复合氧化物为核心的夹杂物。随着夹杂物中Ce含量的增加,钢中夹杂物的尺寸减小。Ce氧化物冶金工艺对夹杂物的细化作用明显。  相似文献   

9.
在实验室用真空感应炉冶炼3炉X65管线钢,其中2炉钢进行镁处理。分析非镁处理钢和镁处理钢中夹杂物的变化特征,研究镁处理对X65管线钢中夹杂物的影响。结果表明:1)非镁处理钢中的夹杂物主要是Al_2O_3系夹杂,镁处理钢中的夹杂物类型主要是MgO-Al_2O_3系夹杂;2)镁处理钢中粒径小(1~5μm)的夹杂物比例相对较高,大颗粒( 15μm)夹杂物明显减少;3)粒径较大的夹杂物主要是Al_2O_3夹杂和靠近低熔点区域的夹杂,靠近镁铝尖晶石成分的夹杂物粒径较小,说明镁处理可使钢中夹杂物变得细小而分散;4)镁处理钢中存在大量的尺寸细小的MgO·Al_2O_3系夹杂物,可以为硫化物的析出提供形核核心,从而减少硫化物在晶界的析出数量。  相似文献   

10.
通过电弧炉出钢加铝铁、硅铁脱氧,LF精炼初渣的组分为(/%:27.39~37.34Al_2O_3,38.42~38.68CaO,14.20~18.38SiO_2,8.50~10.72MgO,0.82~0.89FeO,0.27~0.33MnO,0.69~0.74S,0.66~0.75TiO_2,(CaO)/(SiO_2)=2.09~2.72,(CaO)/(Al_2O_3)=1.04~1.40),LF终点T[O]为0.001 2%~0.0019%,T[N]为0.004 3%~0.005 0%,[Ti]0.002%和[Ca]0.006%~0.009%。GCr15轴承钢LF精炼终点氧化物夹杂分析结果表明,钢中主要氧化物夹杂为镁铝尖晶石(MgO·Al_2O_3)和钙镁铝尖晶石氧化物(CaO·MgO·Al_2O_3)。镁铝尖晶石平均尺寸低于0.5μm,当有MnS、TiN等在其上析出后平均尺寸增大。钙镁铝尖晶石平均尺寸通常在2μm以上,在精炼温度下呈液态,易在钢中聚集长大,其尺寸(1.39~2.12μm)比固态的钙镁铝尖晶石-MnS夹杂物大,且更被精炼渣吸收并上浮去除。随着精炼过程钢液中的硫含量降低,以这两类尖晶石为核心的含MnS的复合夹杂物的平均尺寸降低。适当降低精炼终点渣中MgO的含量、光学碱度和黏度可以减少钢中夹杂物的数量并降低其平均尺寸。  相似文献   

11.
围绕某钢铁企业生产的DP590钢中非金属夹杂物在精炼及浇铸过程中的演变行为,采用氧氮分析、显微夹杂统计及SEM-EDS能谱分析等手段进行了系统深入的研究。利用Fact-Sage软件计算并绘制了1 600℃时CaS-CaO-Al_2O_3三元相图,分析了精炼和连铸过程中夹杂物在CaS-CaO-Al_2O_3三元相图中的演变行为。研究发现,在该厂现行工艺条件下,LF喂钙处理可降低钢中的全氧含量和非金属显微夹杂含量。转炉炉后出钢至精炼出站全氧含量降低了27×10~(-6),非金属显微夹杂物含量减少了54.5%。稳态连铸坯中的氧、氮含量和显微夹杂含量较低。LF精炼喂钙线之前显微夹杂的主要成分为Al_2O_3。在LF精炼钙处理后,中间包及连铸坯中发现了大量的球形Ca O-Al_2O_3类夹杂,这表明钙处理效果良好,实现了将Al_2O_3夹杂物变性的目的。热力学计算结果表明钙处理过程中夹杂物的演变行为为Al_2O_3→Al_2O_3+CaO·6Al_2O_3+CaS→Al_2O_3+CaO·2Al_2O_3+Ca S(Ca S较多,Ca O较少)→Al_2O_3+CaO·2Al_2O_3+CaS(CaS较少,CaO较多)。  相似文献   

12.
基于前人的研究结果,通过热力学计算软件Factsage 7.1分析了20CrMnTiH齿轮钢中复合脱氧平衡。热力学计算结果表明, LF精炼初期,钢中非金属夹杂物的主要成分为Al_2O_3;随着耐火材料的侵蚀以及合金的加入,氧化物夹杂转变为Al_2O_3·MgO,并含有少量CaO;钛合金化后,氧化物夹杂的种类无明显变化,主要成分为Al_2O_3·MgO,由于钛铁中带入少量Ca,氧化物夹杂中CaO略有增加;钙处理后,氧化物夹杂中CaO含量明显增加,Al_2O_3·MgO转变为Al_2O_3·MgO·CaO,夹杂物的平均成分落入液态夹杂物区域。热力学计算结果与实际生产过程中夹杂物的转变具有相同的规律,但实际生产过程由于多元脱氧体系中合金及脱氧元素加入顺序以及动力学因素导致与实际情况具有一定差异。  相似文献   

13.
高强度低合金钢为了控制钢中硫含量,生产过程中采用高碱度、低氧化性精炼渣,致使钢中生成尺寸较大的塑性夹杂物,严重影响钢材质量。炉渣组成对钢中夹杂物有很大影响,文章介绍了采用钢-渣平衡的方法对五种渣系(不同CaO/SiO_2和Al_2O_3%)钢中总氧和非金属夹杂物影响的研究。结果表明,钢-渣反应平衡后,顶渣中Ca O/SiO_2在1.93~4.54,Al_2O_3 %在21%~30%;钢中T.O在7×10~(-6)~19×10~(-6);钢中夹杂物呈球形,绝大多数尺寸在5μm以下,类型为Al_2O_3-Si O2-CaO-MgO系,部分夹杂物中含有少量MnO。当顶渣中Al_2O_3含量一定时,随着顶渣中(CaO+MgO)/SiO_2提高,T.O下降;夹杂物中MnO含量降低,CaO/Al_2O_3增加。当顶渣CaO/SiO_2一定时,随着渣中Al_2O_3含量的提高,T.O增加;夹杂物中Al_2O_3含量增加,CaO含量也相应增加,CaO/Al_2O_3变化不大,约在1,夹杂物中MgO含量和MgO/Al_2O_3下降。随着钢中T.O含量的增加,夹杂物的数量呈上升的趋势;钢中出现大尺寸夹杂物的几率增加。  相似文献   

14.
王祎  张立峰  杨文  雷勋惠  张继  赵根安 《炼钢》2020,36(2):29-33,41
Q345钢生产过程中通过钙处理改性夹杂物,中间包钢水中夹杂物为钙铝酸盐包裹镁铝尖晶石的结构,平均成分为45.71%Al_2O_3-40.22%CaO-6.50%MgO-6.60%CaS-0.97%SiO_2。连铸坯冷却凝固过程,夹杂物发生转变,连铸坯表层冷却速度快,相转变来不及发生,夹杂物成分与中间包钢水中相差不大。连铸坯内弧1/4处夹杂物转变为CaS和MnS包裹镁铝尖晶石的结构,忽略MnS归一化后的平均成分为56.00%Al_2O_3-9.28%CaO-9.07%MgO-25.06%CaS-0.58%SiO_2。从连铸坯边部到中心,夹杂物Al_2O_3和CaS含量显著升高,CaO含量显著降低,夹杂物中硫化物面积分数从边部的0.000 01%升高至中心的0.002 9%,表明硫化物在连铸坯冷却凝固过程中大量析出。采用Factsage 7.0热力学软件计算了Q345钢冷却凝固过程夹杂物的转变,结果与夹杂物检测结果变化趋势一致,且小尺寸夹杂物因动力学上转变更充分而与计算结果更接近。  相似文献   

15.
采用扫描电镜和大样电解等检验方法对抗硫管线钢的冶炼过程试样和连铸坯中夹杂物的数量、尺寸、成分、形貌进行系统分析。结果表明:钢液经过LF精炼后,显微夹杂物的面积比降低了34.7%;中间包钢液的夹杂物面积比较VD出站增加了6.1%。LF进站钢液中的夹杂物主要为Al_2O_3夹杂物,在LF精炼和VD真空处理过程中由于钢渣间的相互作用,形成以CaO、MgO、Al_2O_3为主要组成的复合型夹杂物。钙处理后夹杂物中的CaO和Al_2O_3的物质的量比接近12∶7,并与钢液发生了脱硫反应,形成了含CaS的复合夹杂物。中间包开浇阶段铸坯中的显微夹杂物和大型夹杂物都明显高于稳定浇铸状态;在稳定浇铸状态下,铸坯中的w(T[O])小于15×10~(-6),大型夹杂物的含量小于0.2 mg/kg;大型夹杂物的主要来源是钢包引流砂、结晶器保护渣。  相似文献   

16.
为了进一步研究20CrMo合金钢在生产过程中夹杂物的演变机理,实现对钢中非金属夹杂物的合理控制,保证生产顺行,提高产品力学性能,针对“BOF→LF→RH→钙处理→连铸→热轧”工序生产20CrMo合金钢全流程中非金属夹杂物的演变规律进行了研究。在LF精炼及RH精炼加钙前钢中非金属夹杂物含有70%以上的Al2O3。钙处理后,由于过量的钙加入到钢液中,夹杂物中CaS质量分数迅速增加至59%,Al2O3质量分数降低至21%。在连铸过程中由于二次氧化的发生,夹杂物转变为CaO?Al2O3,其中含有50%的Al2O3、39%的CaO和10%的CaS,并且夹杂物平均尺寸增加。在钢的冷却和凝固过程中,CaO质量分数降低至5%,CaS质量分数增加至57%,钢中夹杂物转变为Al2O3?CaO?CaS的复合夹杂物,同时含有少量大尺寸的CaO?Al2O3夹杂物。在钢的轧制过程中,夹杂物中CaO含量进一步降低,CaS含量增加,夹杂物平均尺寸增加,形成了CaO?Al2O3与CaS黏结型的复合夹杂物与Al2O3?CaS复合夹杂物。对CaO-Al2O3与CaS黏结型的复合夹杂物的形成原因进行了讨论。   相似文献   

17.
对涟钢LG600/LG700XL冶炼过程中夹杂物的衍变机理进行分析,分批次试验研究了精炼渣性能和钙处理工艺对钢液洁净度和钢中夹杂物的影响。结果表明,在钙处理工艺下,夹杂物的衍变路线为Al_2O_3→MgO-Al_2O_3→Al_2O_3-CaO,中间包钢液中的夹杂物主要是Al_2O_3-CaO和Al_2O_3-TiO_x复合氧化物。取消钙处理以后,铸坯中氧的质量分数从16×10~(-6)降低到11×10~(-6)。两种工艺下,材样中绝大部分夹杂物都是核心为铝酸盐、外层为TiN的复合夹杂,钙处理工艺下夹杂物核心是Al_2O_3-CaO-CaS,取消钙处理工艺下夹杂物核心是MgO-Al_2O_3尖晶石。两类复合夹杂物尺寸都比较小(10μm),对钢材性能的影响有限。取消钙处理以后,钢液可浇性基本保持不变,没有发生水口堵塞,说明取消精炼过程中的钙处理工艺对涟钢高强机械用钢而言是可行的。  相似文献   

18.
因为夹杂物Al_2O_3和MnS能引起铝脱氧钢的各向异性,所以为了弄清楚Ca—Al脱氧剂对控制它们的形态的影响,对用Ca—Al脱氧的铝预脱氧钢作了许多试验,并讨论了以这种脱氧为特征的夹杂物形成的机理,其结果总结如下: 1)钢水中的夹杂物变成由Al_2O_3—CaO—CaS组成的低熔点夹杂物,其中CaS分布均匀。 2)钢锭中的夹杂物变成由Al_2_3—CaO—(CaS)组成的复合型夹杂物,其中CaS在周围沉积。有人认为这种复合型夹杂物是凝固过程中,由于溶解度的下降引起CaS的析出而产生的。 3)铜的各向异性由于控制了夹杂物的形状而得到改善。  相似文献   

19.
 为了研究高铝钢中钙处理量与夹杂物特征的关系,通过SEM EDS检测了钢中夹杂物形貌和成分,并结合图像处理软件、体视学等方法统计了夹杂物三维尺寸分布、夹杂物间距和夹杂物分布等参数。结果表明,钙处理高铝钢中夹杂物主要有Al2O3 CaO (CaS)复合夹杂物和AlN等两类夹杂物。高铝钢中钙质量分数由0.000 4%增加到0.002 4%时,夹杂物的平均尺寸由2.5减小到1.8 μm,夹杂物数量是原来的2倍,夹杂物平均间距由95减小到72 μm。通过FactSage热力学计算讨论了冷却过程中夹杂物成分的演变过程,计算结果与试验结果相符。最后根据夹杂物形核计算讨论了夹杂物特征与形核尺寸的关系以及高铝钢中夹杂物分布的影响因素。  相似文献   

20.
《特殊钢》2017,(1)
轴承钢GCr15 EAF出钢用专用精炼渣和Al预脱氧、钢中Al含量为0.03%~0.06%,LF精炼渣为/%:53~58CaO,6~16SiO_2,15~30Al_2O_3,3~10MgO,≤1(FeO+MnO)。利用自动扫描电镜ASPEX分析了320mm×480 mm铸坯和Φ45 mm热轧圆钢的夹杂物。结果表明,GCr15轴承钢铸坯和圆钢中的氧化物夹杂为镁铝尖晶石或钙铝酸盐,铸坯和圆钢边部的氧化物夹杂数量要大于中心,大于10μm夹杂物为球状钙铝酸盐或钙铝酸盐与镁铝尖晶石复合氧化物夹杂;铸坯和圆钢中非氧化物类夹杂主要有MnS、TiN和包裹型夹杂物MnS、TiN和CaS包裹镁铝尖晶石以及CaS包裹钙铝酸盐。利用Factsage计算得出,MnS和TiN在凝固过程中析出,并分别在固相率fs为0.9和0.6之后大量形成。CaS在炼钢温度下(1 600℃)就大量存在,在钢液冷却过程中少量析出,极少量在之后的凝固过程中形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号