首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《广州化工》2021,49(13)
为了规避传统管壳式换热器体积偏大且消耗较高等缺点,开发一种给天然气或页岩气井口加热的便携式新型蒸汽换热器。笔者简化其内部几何结构,采用Fluent仿真数值模拟方法对折流板间距、切率变化和换热器壳程对流传热系数的关系进行了研究。结果表明:壳程对流换热系数随着折流板间距的增大而减小,当折流板切率取定值,间距取61 mm时,换热器在流体产生较小压降情况下获得较大的壳程对流传热系数,换热效果相对最佳;壳程对流换热系数随着折流板切率的增大而变大,当折流板间距取定值,切率取25%时,换热器在流体产生较小压降情况下获得较大的壳程对流传热系数,换热效果相对最佳。最后为设计特定的天然气或页岩气井口管道加热所需的换热器提供了优化依据。  相似文献   

2.
孙斌  张冠男 《化工机械》2015,42(3):404-408
对纳米流体在板式换热器内单边流动和对角流动时的传热性能进行了三维数值模拟计算,得到了传热工质的温度、换热系数和流场的空间分布,分析了其压降与流速的关系。结果表明,纳米流体可以提高板式换热器的性能,其中以纳米流体作为冷流体单边流动时板式换热器的换热性能和降压效果最佳。  相似文献   

3.
水泥窑窑体表面换热系数的计算方法   总被引:1,自引:0,他引:1  
提出了一种计算水泥窑窑体面换热系数的新方法。这种方法充分考虑了强制对流,自然对流,热辐射和窑体大小对换热系数的影响。推导了窑体表面强制对流与自然对流的换热关系式,通过互相比较得到了可忽略强制对流域自然对流的条件。结果表明,大多数情况下窑体表面的强制流换热数量极相等。因此利用向量总和法建立了混合对流换热关系式。进一步的研究发现,辐射散热所占的比例很大,采用黑度小的材料可显著降低熟料热耗。该方法...  相似文献   

4.
为了研究外螺纹管对低温烟气传热强化的效果,搭建低温烟气余热回收试验台,通过对外螺纹管换热器和光管换热器在低温烟气中的传热试验,比较分析外螺纹管和光管2种换热器在不同工况下的传热系数,根据试验数据计算拟合出试验传热关联式。结果表明:外螺纹管换热器的换热系数是光管换热器的1.05~1.09倍;烟气流速从4.5 m/s增加到7.5 m/s时,外螺纹管换热器的换热系数增长率为47%;工质水流速从0.3 m/s增加到0.57 m/s时,外螺纹管换热器的换热系数增长率为2.22%;外螺纹管换热器烟气外侧的传热试验关联式Nu=1.14Re0.48Pr0.3(5×103Re9×103)。  相似文献   

5.
孙斌  赵朝 《化工进展》2014,(3):563-567,582
利用计算流体力动力学方法对恒定热流密度内螺纹铜管中的Fe2O3-水和Al2O3-水纳米流体的换热特性进行数值模拟,分析了纳米流体的质量分数、Re数和管道的不同水平位置对对流换热系数的影响,并将模拟结果与实验结果进行了对比,得到的模拟结果与实验结果趋于一致。模拟结果表明:在Re数为1000~2000的范围内,内螺纹铜管的径向与轴向方向上,Fe2O3-水纳米流体的传热效果好于同等质量分数的Al2O3-水纳米流体,轴向方向上,当Al2O3-水纳米流体的质量分数为0.4%时,对流换热系数最大提高38.8%。Fe2O3-水纳米流体的质量分数提高0.3%时,对流换热系数最大提高26.5%,而Re数变化对对流换热系数的影响要更强一些,最大提高78%。Fe2O3-水和Al2O3-水纳米流体的对流换热系数增长趋势的最佳质量分数在4%左右。  相似文献   

6.
为了增强缠绕管式换热器的综合性能,在圆形光滑传热管外开了沿管中心线方向的半圆形凹槽。基于计算流体动力学(CFD)数值模拟分析,研究这种基于开槽强化管的缠绕管换热器壳侧空气流动、换热及综合性能随凹槽数量和凹槽深度的变化规律。结果表明:当壳侧入口流速一定时,对流换热系数和压降都随凹槽数量增加而增大,且增加趋势逐渐变缓。对流换热系数随凹槽深度的增大先增大后减少,存在峰值;压降随凹槽深度的增大先增大后维持基本不变,而换热器的综合性能评价指标(PEC),随凹槽数量的增加维持基本不变,但与圆形光管相比提高了约4.21%;随凹槽深度的增加,先增大后减小,在0.3 mm深度达到峰值,该值比圆形光管提高了约4.21%。  相似文献   

7.
立式花瓣管外空气螺旋流动传热及流阻性能研究   总被引:1,自引:0,他引:1  
螺旋隔板花瓣管换热器具有优异的换热性能,但由于目前基础数据不足,螺旋隔板花瓣管换热器的应用还未能普及,研究花瓣管几何结构参数对换热过程的影响规律及传热机理,可为该类型换热器提供设计依据.今在实验中通过采用空气在缠绕金属螺旋片的换热管外套管环隙中的换热来模拟螺旋隔板换热器的换热过程,研究了空气在缠绕螺旋片的立式光滑管和不同翅片高度与间距的立式花瓣管外螺旋流动的传热与流阻性能,分析了花瓣管翅片高度和间距等主要几何结构参数以及管外空气流速对传热与流阻性能的影响.实验结果表明:翅片高1.5mm、间距1.0mm的花瓣管具有最佳的传热性能,花瓣管外空气对流换热系数是光滑管的1.48~3.24倍;在实验范围内,随着空气流速的增加,花瓣管外空气对流换热系数与流动阻力也相应增加,但综合换热性能下降并在空气流速为36.0~42.2m·s-1时达到最低值.  相似文献   

8.
为了研究板式换热器流固耦合问题,对油水板式换热器的换热特性及流动特性进行了实验及数值模拟。运用Fluent软件,建立与实验元件波纹参数相同的简化几何模型进行模拟分析,验证数值模拟的可靠性。模拟结果在传热性能与流动阻力方面与实验结果吻合较好。在此基础上,考虑波纹板片的受力,对换热器进行了流固耦合计算,获得了不同工况下板片的应变分布。流固耦合结果表明,当油液黏度较高时,板片所受作用力较大,因此,换热器设计时应综合考虑换热性能、流动阻力及板片的受力问题。  相似文献   

9.
为了获得翅片结构对双向开缝翅片管换热器传热与阻力性能的影响规律,对不同翅片间距Pf和开缝高度Sh的双向开缝翅片管换热器进行了数值模拟,并对数值模拟结果进行了模化试验验证。结果表明:当Re7200时,增大Pf会提高双向开缝翅片管换热器的传热与阻力性能;当Re7200时,减小Pf会提高其传热性能,降低其阻力性能;随着Sh的增加,双向开缝翅片管换热器的传热性能先降低后提高,阻力性能先提高后降低;对于不同翅片结构的5种双向开缝翅片管换热器,Pf越大,综合流动传热性能越高,但实际换热面积会减小,需综合考虑;在Re=2734~6712范围内数值模拟与试验结果吻合较好,数值模拟能较准确地反映双向开缝翅片管换热器的传热与阻力特性。研究成果可为双向开缝翅片管换热器的结构与性能优化提供依据。  相似文献   

10.
《中氮肥》2017,(5)
在换热器的设计及使用过程中,会因污垢热阻系数的影响而造成换热效果与工况要求之间存在偏差,严重偏离时甚至会导致停车。为避免因污垢热阻系数考虑不合理而造成的设备投资费用增加或满足不了生产运行的要求,在换热器的设计及使用过程中,可采取有针对性的方法减小污垢热阻系数带来的负面影响,从而提高换热器的运行效率及经济性。  相似文献   

11.
《广州化工》2021,49(17)
绕管式换热器广泛应用于大型陆上天然气液化厂,其换热特性是LNG液化能力的关键因素。通过调研国内外关于绕管式换热器的最新研究进展,对绕管式换热器换热性能进行数值模拟,模拟不同雷诺数工况下绕管式换热器壳侧的流动换热,比较不同入口条件和边界条件下数值模拟,得出了以下结论:低雷诺数时,Re对绕管式换热器的影响较为显著。当Re较大时,Re的作用减弱,并且倾斜工况比竖直工况下换热效果更好;壳侧入口干度越大时,对换热有削弱作用;倾斜工况比竖直工况下换热效果更好。  相似文献   

12.
为了分析波纹管对高温熔盐传热工质的强化传热效果,选用三元氟盐高温熔盐为研究对象,对比分析了三元氟盐在光管和波纹管内的对流传热性能,并研究了熔盐速度、非均匀热流密度对其传热性能的影响。数值模拟结果表明,波纹管比光管具有更好的对流传热性能。另外,模拟分析了当量直径相同、波深波距比不同的五种波纹管中三元氟盐的传热性能,结果表明波纹管的波深波距比和雷诺数都对传热性能有着显著的影响。在一定范围内三元氟盐在波纹管内的对流换热系数随着雷诺数的增大而增大,当波深/波距比高于0.2时,对流换热系数开始减小,可以得到当波纹管的波深/波距比值在0.2左右时波纹管的对流换热系数可以达到一个相对较优的值。  相似文献   

13.
一种新型的高换热效率的螺旋盘管换热器。将该新型换热器与普通的管壳式螺旋盘管换热器进行理论分析对比,该新型换热器具有以下主要三个方面优势:可轻松拆卸,定期清除管外壁上的污垢;能有效提高管外侧的对流换热系数;有效减少了管壳体本身的蓄热耗能。通过理论分析计算,比较了设计新型螺旋盘管换热器的性能优劣;并进行了实验研究,在实验中,通过对比实验发现新型螺旋盘管换热器管外侧水流速是普通螺旋盘管换热器的2.3倍,管外侧对流表面换热系数是普通螺旋盘管换热器的1.69倍。验证了新型螺旋盘管换热器能够有效提高换热能力,为螺旋盘管换热器的结构设计、性能优化提供有益的理论和实践依据。  相似文献   

14.
新型换热表面硫酸腐蚀特性的数值预测   总被引:1,自引:1,他引:0       下载免费PDF全文
王禹晨  唐桂华 《化工学报》2016,67(Z1):76-83
低温腐蚀是造成换热设备失效并降低其经济性的重要原因。基于汽液平衡理论和多组分扩散影响数值模拟了不同换热管管壁表面及翅片表面酸露点温度和酸蒸气、水蒸气冷凝沉积速率等影响低温腐蚀的相关因素,数值预测了换热表面局部酸露点温度,为换热器精细设计提供指导。结果表明,燃料类型、飞灰颗粒和翅片结构均会对换热表面酸露点温度造成不同程度影响。燃料类型决定烟气成分和燃烧温度,对酸露点温度影响较大;烟气中飞灰颗粒的存在会降低酸露点温度;翅片结构能够改变周围烟气速度,影响酸露点温度和壁面上酸蒸气、水蒸气冷凝沉积速率。基于以上数值研究提出丁胞和矩形纵向涡复合H型翅片结构可降低壁面上烟气酸露点温度,降低酸蒸气、水蒸气冷凝沉积速率。  相似文献   

15.
翅片结构对双向开缝翅片管换热器性能的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
屠琦琅  袁益超  胡晓红 《化工学报》2016,67(11):4615-4622
为了获得翅片结构对双向开缝翅片管换热器传热与阻力性能的影响规律,对不同翅片间距Pf和开缝高度Sh的双向开缝翅片管换热器进行了数值模拟,并对数值模拟结果进行了模化试验验证。结果表明:当Re<7200时,增大Pf会提高双向开缝翅片管换热器的传热与阻力性能;当Re>7200时,减小Pf会提高其传热性能,降低其阻力性能;随着Sh的增加,双向开缝翅片管换热器的传热性能先降低后提高,阻力性能先提高后降低;对于不同翅片结构的5种双向开缝翅片管换热器,Pf越大,综合流动传热性能越高,但实际换热面积会减小,需综合考虑;在Re=2734~6712范围内数值模拟与试验结果吻合较好,数值模拟能较准确地反映双向开缝翅片管换热器的传热与阻力特性。研究成果可为双向开缝翅片管换热器的结构与性能优化提供依据。  相似文献   

16.
低温腐蚀是造成换热设备失效并降低其经济性的重要原因。基于汽液平衡理论和多组分扩散影响数值模拟了不同换热管管壁表面及翅片表面酸露点温度和酸蒸气、水蒸气冷凝沉积速率等影响低温腐蚀的相关因素,数值预测了换热表面局部酸露点温度,为换热器精细设计提供指导。结果表明,燃料类型、飞灰颗粒和翅片结构均会对换热表面酸露点温度造成不同程度影响。燃料类型决定烟气成分和燃烧温度,对酸露点温度影响较大;烟气中飞灰颗粒的存在会降低酸露点温度;翅片结构能够改变周围烟气速度,影响酸露点温度和壁面上酸蒸气、水蒸气冷凝沉积速率。基于以上数值研究提出丁胞和矩形纵向涡复合H型翅片结构可降低壁面上烟气酸露点温度,降低酸蒸气、水蒸气冷凝沉积速率。  相似文献   

17.
为了改善相变换热器的传热性能,使用Fluent软件分别对水蒸气和空气-水蒸气在竖直平板上的冷凝换热进行数值模拟。气液两相流采用VOF模型,水蒸气冷凝的相变模型采用Knudsen相变系数模型,水蒸气在空气中的扩散采用组分运输模型。研究了进口速度、空气质量分数对冷凝换热的影响,结果表明:当水蒸气中混入空气时,严重影响了冷凝换热性能;换热系数随空气质量分数的增加而降低,同时液膜厚度也减薄,当空气质量分数为0. 1时,换热系数降低了42. 1%,冷凝液量降低了25. 5%;提高流速,可有效提高换热系数,湍流状态下为层流状态下的3倍左右,但冷凝量却无明显变化。  相似文献   

18.
《化工机械》2016,(1):72-76
利用数值耦合传热计算方法研究了四排管双开缝翅片管式换热器的传热特性和阻力特性,获得翅片附近空气的速度场和温度场,分析了开缝对翅片管换热器换热性能的影响。并针对翅片间距和开缝高度对翅片管换热性能的影响进行了数值模拟分析,得到了开缝高度和翅片间距针对换热系数的最佳组合。  相似文献   

19.
采用氟塑料设计了一种U型管换热器结构,通过有限元方法计算了氟塑料换热器换热性能,分析了冷媒水流速对换热器性能的影响。实验结果表明:换热器的等效传热系数可以达到40.168 W/(m~2·K)。冷媒水在内管出口的温度比入口处的温度上升了9.045℃,吸收了烟气中的锅炉余热。烟气在外管出口的温度比入口处的温度下降了6.97℃,余热得以散失。此外,氟塑料换热器的冷媒水压降、烟气压降、烟气降低温度和等效传热系数都会随着冷媒水流速的增大而增大,因而氟塑料换热器的性能随着冷媒水的流速增大而提高。  相似文献   

20.
《化工机械》2017,(5):547-552
采用CFD数值计算方法,以水-空气为换热系统、水为管内流体,研究了扁平度、扭距等结构和流动参数对扭曲扁平管传热强化和阻力特性的影响规律,建立了适用于扭曲扁平管对流换热系数和Fanning摩擦因子的准数关联式。结果表明:扭曲扁平管产生的二次流对管内对流传热起到强化作用,雷诺数Re为6 000~18 000时,综合传热性能评价因子η为1.01~1.61;增大扁平度能够提高扭曲扁平管的综合传热性能;减小扭曲比虽然能够提高扭曲扁平管的对流换热系数,但阻力损失增加,且不利于提高扭曲管的综合传热性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号