首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭一平 《工业催化》2019,27(9):54-58
采用溶液燃烧法制备CO甲烷化Ni基催化剂,考察助剂MgO添加量对催化剂结构和性能的影响,并探讨MgO添加量-催化剂结构-CO甲烷化性能的构效关系。结果表明,MgO添加质量分数6%的催化剂具有适当的还原温度,其CO转化率、CH 4选择性和收率分别高达99%、97%和94.5%。催化剂寿命实验表明,在24 h反应时间内,6%MgO添加量的催化剂上CO转化率和CH 4选择性分别高达96%和94%以上,表现出较高的活性、选择性和稳定性。  相似文献   

2.
煤制天然气采用耐硫甲烷化催化剂,减小了反应设备体积,对节省投资和降低能耗有积极意义。采用等体积浸渍法制备系列Mo-Ni/γ-Al2O3耐硫甲烷化催化剂,并对催化剂活性及耐硫性进行评价,考察浸渍液中不同Co和W元素添加量对催化剂活性的影响。结果表明,耐硫甲烷化催化剂活性中心MoS2和WS2的生成有利于提高CO转化率和CH4选择性,促进合成气生成CH4,Co的添加不利于提高催化剂的CO转化率和CH4选择性,而W元素的添加有利于提高催化剂的CO转化率和CH4选择性。在反应温度550℃、压力2 MPa和空速1 800 h-1条件下,n(H2)∶n(CO)=1∶1时,CO转化率为64.24%,CH4选择性为52.00%。n(H2)∶n(CO)=3∶1时,CO转化率为77.90%,CH4选择性为68.41%。  相似文献   

3.
通过浸渍法制备了一系列20Ni/xCe-TiO_2催化剂。考察了助剂Ce对于NiO/TiO_2催化剂甲烷化性能的影响,并对Ce助剂的最佳添加量进行了研究。对所制得催化剂进行了活性评价、还原条件测试、寿命测试,并利用SEM对其进行了表征。结果表明,添加助剂Ce可以增加催化剂的使用寿命,提高催化剂分散性,减小催化剂晶粒大小,增加反应活性区间,提高CH_4的选择性。通过对助剂Ce不同添加量的研究发现,20Ni/6Ce-TiO_2催化剂的活性较好,CO转化率可达88.8%,CH_4收率可达99.3%。对20Ni/6Ce-TiO_2催化剂还原条件的研究表明,在500℃TPR还原条件下活性较优。  相似文献   

4.
《化学工程》2016,(11):48-53
建立了煤基合成气甲烷化反应过程基于吉布斯自由能最小法的热力学计算模型。考察了温度、压力对CO,CO_2单独及同时甲烷化反应的影响,探讨了原料气脱碳处理后,CO_2摩尔分数对CO转化率、CH_4选择性、CH_4产率及积炭的影响。结果表明,低温高压有利于甲烷化反应。在多数情况下CO转化率要高于CO_2,尤其是温度低于600℃时,CO甲烷反应比CO_2更容易发生;随着温度进一步升高,CO_2转化率明显上升,而CO转化率迅速下降。另外,当原料气中CO_2摩尔分数低于2.44%时对积炭无影响,对CH_4的选择性和产率降幅小于10%,在脱碳工艺中可以不予脱除。  相似文献   

5.
钟朋展  孟凡会  崔晓曦  刘军  李忠 《化工进展》2013,(8):1845-1848,1875
以3种不同镍盐(硝酸镍、乙酸镍和氯化镍)为前体,采用等体积浸渍法制备了双金属Ni-Fe/γ-Al2O3催化剂,分别记作Ni-Fe-N、Ni-Fe-Ac和Ni-Fe-Cl,在浆态床反应装置上对各催化剂CO甲烷化催化活性进行评价。结果表明,Ni-Fe-N甲烷化催化活性最高,CO转化率、CH4选择性分别为97.2%和87.3%;而Ni-Fe-Cl甲烷化催化活性最低,CO转化率、CH4选择性分别为47.3%和58.7%。通过XRD、H2-TPR和CO-TPD等表征技术探讨了催化剂的微观结构与甲烷化催化活性之间的关系,发现Ni-Fe-N甲烷化活性高的原因是NiO晶粒小、分散好,Ni与Fe之间具有较好的协同作用,并且CO吸附量大。  相似文献   

6.
采用共浸渍法制备了Ni-Mn/Al2O3催化剂,考察了助剂Mn的含量对催化剂结构及浆态床CO甲烷化性能的影响。采用XRD、H2-TPR、BET、TEM、H2-化学吸附等表征对催化剂进行了测试分析,结果表明,Mn助剂的引入能够促进Ni物种在载体表面的分散,减弱Ni物种与载体的相互作用,降低催化剂的还原温度,提高催化剂的比表面积,减小活性金属Ni的晶粒尺寸。随着Mn含量的增加,Ni-Mn/Al2O3催化剂的甲烷化性能先升后降,其中以Mn含量为4%(质量分数)时的催化甲烷化性能最佳,添加过量的Mn导致活性组分Ni被部分覆盖,催化甲烷化性能下降。通过对16Ni4Mn/Al2O3催化剂样品的浆态床反应温度及反应压力的研究发现,当反应温度为280℃、反应压力为1.5 MPa时,催化剂样品16Ni4Mn/Al2O3的CO转化率及CH4选择性分别达到96.2%和88.8%。  相似文献   

7.
制备了MgO/γ-Al2O3固体碱催化剂,采用X射线衍射、CO2-TPD程序升温脱附等手段表征了催化剂的结构和碱性质。结果表明:MgO负载量(质量分数)对催化剂上MgO的分散程度和催化剂碱性质有着重要影响。负载MgO后,γ-Al2O3仍然保持了原有的结构。当MgO的负载量小于9%时,几乎检测不到MgO特征衍射峰。催化剂的碱量随MgO负载量的增加而逐步提高,当负载量为9%时其碱量达到最大。考察了MgO负载量、反应时间、反应温度对碳酸乙烯酯(EC)水解反应合成乙二醇(EG)的影响。随着MgO负载量的增加,EC转化率逐渐上升。工艺条件研究表明:140℃和3 h以及酯水比(摩尔比)1∶1为最佳催化反应条件。采用9%MgO/γ-Al2O3为催化剂,在最佳工艺条件下,EG收率高达95.6%。  相似文献   

8.
利用行星式球磨机,以NH_4HCO_3、Na_2CO_3和(NH_4)_2CO_3为沉淀剂,采用机械化学法制备3种负载型Ni-Al_2O_3催化剂(分别记为Ni-NH4HC、Ni-Na C和Ni-NH_4C)。利用XRD、H2-TPR、N_2吸附-脱附、SEM和TPH等对催化剂进行表征,考察沉淀剂对Ni-Al_2O_3催化剂晶相结构、还原特征、孔道结构、表面形貌和浆态床CO甲烷化性能的影响。结果表明,以(NH_4)_2CO_3为沉淀剂所制备的Ni-NH_4C催化剂比表面积较大;活性组分晶粒尺寸较小。催化剂性能评价表明,CO甲烷化的"初始段"约需1 h,Ni-NH_4C和Ni-NH_4HC试样在"稳定段"的CO转化率均较高,约为77%;而Ni-NH_4C的CH_4选择性更高,在90%左右,这与催化剂活性金属的"尺寸效应"有较大关联。  相似文献   

9.
采用负载型Rh/MgO/γ-Al2O3催化剂研究了毫秒级甲烷蒸汽重整过程,在水碳比为1和3的条件下,详细考察了反应温度、空速和催化剂Rh含量对反应转化率和选择性的影响。研究结果表明,Rh/MgO/γ-Al2O3催化剂在毫秒级操作条件下具有良好的催化性能,使用5%(质量分数)Rh催化剂,在水碳比3、反应温度1150K、空速641.11 L·(gcat)-1·h-1时,CH4转化率约90%,CO2选择性约20%,毫秒级接触时间反应行为即可接近热力学平衡。高温有利于毫秒级甲烷蒸汽重整过程。  相似文献   

10.
对不同含量 NiO 和 Fe2O3活性组分、不同含量 MgO、La2O3助剂系列催化剂进行等体积浸渍,在固定床微型反应装置中进行催化性能研究,结果表明,当活性组分配比为 8 % Ni-2 % Fe 时,CO 转化率达 90.07 %,CH4选择性为 97.34 %;当 MgO 添加量为 2wt%时,CO 转化率在反应温度 530 ℃时达到最大值 95.98 %,CH4选择性随温度的升高在 390 ℃和 550 ℃出现有两个极大值分别为 96.43%和 94.52 %;当 La2O3添加量为 2 wt%时,在反应温度 440 ℃和 530 ℃时 CH4选择性分别为 98.72 %和 97.74 %,而 CO 转化率在 500 ℃最好,达到 94.41 %;催化剂表征添加助剂 MgO 不仅能缩小孔径提高其比表面积,还增加了活性组分在载体表面的分散性。  相似文献   

11.
倪蓓  许杰  薛冰  刘平  李永昕 《化工进展》2012,31(5):1061-1064
以硝酸镁为前体,通过等体积浸渍法制备不同负载量的MgO/NaY催化剂,用CO2-TPD和TEM对催化剂进行了表征,考察MgO负载量、反应温度、反应时间等条件对甲醇与碳酸乙烯酯(EC)酯交换反应合成对碳酸二甲酯(DMC)的影响。实验结果表明:MgO的负载量对催化剂表面的碱量和MgO分散程度有着重要影响。高分散的MgO物种越多,其催化剂碱量越高。采用12%MgO/NaY为催化剂、反应温度70 ℃、n(甲醇)∶n(EC)= 8∶1、反应时间3 h时,EC的转化率和DMC的选择性最佳,DMC收率高达89%。  相似文献   

12.
孟凡会  常慧蓉  李忠 《化工学报》2014,65(8):2997-3003
采用共浸渍法制备了Ni-Mn/Al2O3催化剂,考察了助剂Mn的含量对催化剂结构及浆态床CO甲烷化性能的影响。采用XRD、H2-TPR、BET、TEM、H2-化学吸附等表征对催化剂进行了测试分析,结果表明,Mn助剂的引入能够促进Ni物种在载体表面的分散,减弱Ni物种与载体的相互作用,降低催化剂的还原温度,提高催化剂的比表面积,减小活性金属Ni的晶粒尺寸。随着Mn含量的增加,Ni-Mn/Al2O3催化剂的甲烷化性能先升后降,其中以Mn含量为4%(质量分数)时的催化甲烷化性能最佳,添加过量的Mn导致活性组分Ni被部分覆盖,催化甲烷化性能下降。通过对16Ni4Mn/Al2O3催化剂样品的浆态床反应温度及反应压力的研究发现,当反应温度为280℃、反应压力为1.5 MPa时,催化剂样品16Ni4Mn/Al2O3的CO转化率及CH4选择性分别达到96.2%和88.8%。  相似文献   

13.
史蕊  李坚 《工业催化》2018,26(3):39-44
采用共沉淀法制备xWO_3-Ce O2-Co_3O_4复合型非贵金属CO低温催化剂,考察不同WO_3添加量和空速对催化剂催化活性的影响,并考察催化剂的抗硫性能。通过孔隙结构测试、H2-TPR、FT-IR和SEM等对催化剂进行表征。结果表明,WO_3添加质量分数1%时,催化剂具有最佳的低温活性。在CO进口体积分数0.12%、O2进口体积分数5%和空速15 000 h-1条件下,50℃时,CO转化率即可达到99.6%,60℃时,CO转化率达100%。添加WO_3,催化剂氧化能力增强,催化效率提高。随着空速升高,CO转化率下降。WO_3的加入可有效提高催化剂的比表面积,抑制硫酸盐在催化剂表面聚集,提高催化剂的抗硫性能。  相似文献   

14.
《化学工程》2021,49(7)
将稀土化合物CeO_2和La_2O_2CO_3分别与MgO载体复合负载Ni,制备Ni/MgO-La_2O_2CO_3(NML)和Ni/MgO-CeO_2(NMC)催化剂,用于催化乙醇水蒸气重整制氢。通过XRD研究负载催化的晶相,程序升温还原(TPR)对催化剂的综合性能进行分析。结果表明:稀土化合物复合的NMC,NML能明显提高Ni/MgO(NM)的低温乙醇转化率,350℃时,NM的乙醇转化率为78.3%,而此时NML,NMC的乙醇转化率却已接近100%,400—500℃范围内,NMC和NML明显提高了NM的H_2选择性,CO_2选择性也有所提高,同时降低了NM的CO,CH_4选择性,其中NMC的H_2选择性高于NML,而CO_2,CO,CH_4选择性却均低于NML,综合考虑乙醇转化率,NMC和NML能明显提高NM的综合催化性能,其中MgO-CeO_2复合载体负载Ni(NMC)对乙醇重整制氢的催化效果最好。  相似文献   

15.
采用机械湿混法制备了一系列MgO改性的HMCM-22分子筛催化剂,通过XRD、SEM、N2物理吸/脱附、Py-IR等手段对改性催化剂的晶体结构、表面形貌、孔道变化和酸性酸量等性质进行了表征,发现负载MgO能够有效地调变HMCM-22分子筛的酸性,但对其孔道的调节效果较弱。采用微反装置评价催化剂性能,在进料比为1∶1、常压、温度为400℃、反应时间4h、质量空速WHSV=10h-1的条件下,考察了不同MgO负载量下的MgO/HMCM-22催化性能,研究发现MgO负载量介于3%~6%的MgO/HMCM-22催化剂具有优越的催化性能,苯转化率>50%,甲苯选择性>60%。同时在该反应条件下,对3%MgO/HMCM-22催化剂的稳定性进行了考察,结果表明,反应40h内,苯的转化率始终保持在50%以上;反应至第80h时,苯的转化率仍然可达23%,且甲苯选择性始终保持在65%左右。  相似文献   

16.
《应用化工》2017,(12):2314-2319
采用机械化学一步法、机械化学-浸渍两步法和浸渍法(以普通商业Al_2O_3为载体)分别制备了Ni/Al_2O_3-J、Ni/Al_2O_3-Z和Ni/Al_2O_3-C三个催化剂。通过XRD、H_2-TPR、N_2吸附-脱附和SEM等进行表征,并在浆态床上对催化剂的合成气甲烷化性能进行了测试。结果表明,相对于普通商业Al2O3,采用机械化学法合成的氧化铝比表面积大,孔径分布集中,其负载Ni制备的催化剂甲烷化性能较高。采用机械化学一步法合成的催化剂Ni/Al_2O_3-J的表面形貌规整,具有较好的Ni分散性,比表面积较大(266.8 m~2/g)。在压力1.0 MPa、温度300℃、H_2∶CO=3.1∶1和空速1 200 mL/(g·h)条件下,平均CO转化率、CH_4选择性和收率分别高达98.6%,96.0%和94.7%,高于其它方法制备的催化剂。  相似文献   

17.
《应用化工》2022,(12):2314-2319
采用机械化学一步法、机械化学-浸渍两步法和浸渍法(以普通商业Al_2O_3为载体)分别制备了Ni/Al_2O_3-J、Ni/Al_2O_3-Z和Ni/Al_2O_3-C三个催化剂。通过XRD、H_2-TPR、N_2吸附-脱附和SEM等进行表征,并在浆态床上对催化剂的合成气甲烷化性能进行了测试。结果表明,相对于普通商业Al2O3,采用机械化学法合成的氧化铝比表面积大,孔径分布集中,其负载Ni制备的催化剂甲烷化性能较高。采用机械化学一步法合成的催化剂Ni/Al_2O_3-J的表面形貌规整,具有较好的Ni分散性,比表面积较大(266.8 m2/g)。在压力1.0 MPa、温度300℃、H_2∶CO=3.1∶1和空速1 200 mL/(g·h)条件下,平均CO转化率、CH_4选择性和收率分别高达98.6%,96.0%和94.7%,高于其它方法制备的催化剂。  相似文献   

18.
采用共浸渍法制备了不同Mg和Sr含量的15%Co-x%M/AC催化剂,考察其CO加氢制高碳混合醇的性能。结果表明,添加适量Mg,使催化剂的CO转化率由39.8%提高至47.4%,甲烷选择性由26.2%降至16.9%,同时醇中高碳混合醇由42.6%提高至53.5%;添加Sr明显抑制高碳混合醇的生成。通过CO化学吸附、XRD和TPR等表征发现,少量Mg能提高Co分散度,促进Co2C生成,使催化剂CO转化率增加,高碳混合醇选择性增加,甲烷选择性减少。  相似文献   

19.
利用行星式球磨机并采用机械化学法制备了系列Ni-Al_2O_3催化剂,考察了球配比[大小质量比(1∶0、0∶1、1∶1)]、球磨时间(30、50、60、70、90 min)和球料比(1∶1、2∶1、3∶1)对Ni-Al_2O_3催化剂晶相结构、孔道结构、粒径分布和浆态床CO甲烷化性能的影响。XRD分析结果显示,具有NiCO_3·6H_2O物相的活性组分Ni前体焙烧后均转变成无定型NiO,高度分散在Al_2O_3载体中。BET和PSD分析表明,大球球磨制备的CT-10比表面积较大,近300 m~2/g;平均粒径较小,仅为240 nm。评价实验显示,全采用大球球磨制备的CT-10试样,CO转化率、CH_4选择性和CH_4收率均最高,分别为72.01%、49.08%和35.57%。经对球磨时间(60 min)和球、料质量比(2∶1)优化后,所得CT1-60-21试样的CH_4选择性和收率分别提高至87%和75%。  相似文献   

20.
以拟薄水铝石、硝酸镍以及镁、钴、镧和铁的硝酸盐为原料,尿素为燃烧剂,采用尿素燃烧法制备系列镍基(以及含助剂)甲烷化催化剂。通过XRD和BET等对催化剂结构进行表征,采用固定床反应器评价催化剂的合成气甲烷化催化反应性能,考察Ni含量、尿素与原料质量比、焙烧温度和不同助剂等对催化剂结构和性能的影响,评价催化剂的稳定性。结果表明,Ni O质量分数为7.5%~44.8%时,采用尿素燃烧法均可制备γ-Al2O3为载体的镍基甲烷化催化剂,最佳制备条件为:尿素与原料质量比3∶1,焙烧温度450℃,燃烧时间40 min。26.1%Ni O/γ-Al2O3催化剂表现出较好的催化性能,在230℃和常压条件下,CO转化率和CH4选择性分别达99.5%和98.3%。26.1%Ni O-2.6%La2O3/γ-Al2O3催化剂在(230~700)℃经过多次升降反应温度和1 460 h的长周期稳定性测试,表现出较好的稳定性和耐热冲击性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号