首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于时间序列和神经网络的电力系统负荷预测   总被引:7,自引:0,他引:7  
针对采用时间序列对电力系统负荷进行预测时,无法考虑温度变化等因素的影响,利用神经网络的非线性拟合能力,提出了一种基于时间序列和神经网络组合的电力系统负荷预测方法。在时间序列法中,通过大量的历史数据随机序列对负荷进行预测,对于其结果再通过神经网络进行修正,算例表明所提方法是可行而有效的。  相似文献   

2.
针对我国每年频繁发生的洪涝灾害及河流航道通行困难等问题,构建了一个基于时间序列神经网络的高 精度的河流水位预报模型,该模型能够有效预测河流水位值,进而及时做出应急处理,减少对生命财产造成的损 失。该模型采用湖北省武汉市某水位站 2019 年 7 月 29 日至 2020 年 5 月 28 日的逐时水位时间序列作为训练样本 进行训练, 2020 年 5 月 29 日至 2021 年 8 月 28 日的逐时水位组成的 500 个数据为测试样本进行检验。该模型的 预测水位值与真实水位值之间的平均绝对误差为 0.00663,均方根误差为 0.08143,平均绝对百分比误差为 0.23785%,预测精度极高,具有较强实际应用前景。  相似文献   

3.
为了提高风电场风速短期预测的精确性,本文提出了基于Elman神经网络的预测。首先求出风速时间序列的嵌入维数和延迟时间,进而对混沌风速时间序列进行相空间重构。然后利用Elman神经网络对相空间重构后的风速时间序列进行预测,预测结果表明基于Elman神经网络的预测效果满足了精度要求。本文同时运用BP神经网络进行预测。仿真结...  相似文献   

4.
复杂时间序列预测是时间序列分析的主要研究内容之一,已成为一个具有重要理论和实际应用价值的热点研究领域。基于小波和神经网络组合模型,提出一种多因子小波预测模型以提高水文时间序列的预测精度。并根据不同小波函数对水文时间序列数据的适应性,提出了一种基于加权相关系数的小波函数选择准则。以国家重要水文站淮河王家坝站汛期的日流量时间序列预测为例,对各种常用小波函数进行了实验。结果发现选择得到的Haar小波和B3 spline小波函数预测精度较高,从而验证了小波函数选取准则的有效性;通过和传统单序列小波神经网络模型比较,发现提出的多因子小波神经网络模型的预测合格率在不同预见期均提高了10%以上,并且对洪水高流量方向预测合格率提高了15%。  相似文献   

5.
在运用时间序列法预测风速及风电功率的基础上,采用分层统计法对16台风电机组的风速功率数据进行统计分析,得出基于实测数据的风速功率关系带,用于提取有效历史功率点,达到提高风电功率预测精度的目的.运用MATLAB软件编程实现预测,并选取合适的误差衡量指标进行误差分析.  相似文献   

6.
为克服风速与风电功率之间的非线性关系对预测精度的影响,建立了基于时间序列法和神经网络法的改进预测模型。用时间序列法建立风速预测模型;利用神经网络法建立风速-风电功率模型,并以风速预测数据为输入量预测风电功率。以某风电场为例,比较分析了该改进模型与传统预测模型的平均绝对误差和相关系数,结果表明该改进预测模型可有效提高预测精度。  相似文献   

7.
基于牛顿插值和神经网络的时间序列预测研究   总被引:2,自引:0,他引:2  
在时间序列法基础上应用插值理论和神经网络建立一种新的预测模型。首先采用插值法拟合历史 销售数据并求出大量的数据训练神经网络, 弥补了历史数据缺乏的问题;然后用训练好的神经网络代替传统的最小 二乘法拟合时间序列因素, 从而求出预测值。仿真结果表明, 此模型能够有效地改善模型的拟合能力并提高预测精 度。  相似文献   

8.
基于多尺度小波分解和时间序列法的风电场风速预测   总被引:1,自引:0,他引:1  
针对目前风电场风速预测精度较低的问题,提出一种基于多尺度小波分解和时间序列法的混合风速预测模型,通过小波分解将风速非平稳时间序列分解为不同尺度坐标上的平稳时间序列,然后把分解后的各层序列重构回原尺度,再应用自回归滑动平均模型对平稳时间序列进行预测,最后通过叠加合成得出原始风速序列的预测值。同时在验证时间序列模型有效性与模型选优过程中,采用基于贝叶斯理论的SBC定阶准则,改善了以往模型定阶准则的收敛特性。在算例分析中分别利用本文方法和常规预测法对实际风速分布特性进行预测分析,结果表明,本文方法对不平稳风速序列的预测具有更高的预测精度和更强的适应性。  相似文献   

9.
为合理将人工冻结法应用于地下工程建设中,确保冻结壁的稳定性。通过对人工冻结试验过程中的温度场进行预测分析,利用神经网络对样本进行学习,并与实测数据进行对比,表明该方法可以较为准确地对未知温度场进行预测。通过对西南某地区泥炭土进行冻结试验,试验结果表明:在封闭不补水条件下人工冻结试样冷端温度越低,土体的降温速率越快,温度场稳定后值越小。以实测温度场构成时间序列,基于神经网络,通过建立时间序列神经网络预测模型对泥炭土的温度变化进行预测,对比实测值和预测值,平均绝对误差为0.066 8,均方根误差为0.034 7,整体误差较小,该预测模型能够较为精确地预测温度场变化规律。  相似文献   

10.
暂态混沌神经网络是一种基于Hopfield网络提出的混沌神经网络,具有收敛速度快、不易陷入局部极小等优点.许多低阶的混沌系统都可以展成二阶volterra级数,因此提出一种基于暂态混沌神经网络和volterra级数的低阶混沌时间序列预测方法.该方法利用暂态混沌神经网络计算系统的volterra级数系数,确定系统的动力学模型,从而实现混沌时间序列预测.利用Logistic模型对该方法进行测试,结果表明,预测相对误差小于0.5%,预测可达到较高的速度和精度.  相似文献   

11.
基于遗传BP神经网络的短期风速预测模型   总被引:8,自引:0,他引:8  
为了提高风电场短期风速预测精度,提出将遗传算法和反向传播(BP)神经网络相结合的预测模型.采用自相关性分析找出对预测值影响最大的几个历史时刻风速,以历史时刻的风速、温度、湿度和气压作为BP神经网络预测模型的输入变量;利用遗传算法的全局搜索能力获得BP神经网络优化的初始权值和阈值;采用优化后的BP神经网络分别建立1、2、3 h的短期风速预测模型.实验结果表明,该方法较BP神经网络具有预测精度高、收敛速度快的优点.  相似文献   

12.
基于小波神经网络的时间序列预报方法及应用   总被引:13,自引:0,他引:13  
传统的时间序列预测模型在处理具有非线性特性或非平稳时间序列问题,特别是对有人参与的主动系统、社会经济系统的预测上,无法取得满意的预测效果.寻求处理这类系统的方法是人们一直努力的方向.这里以小波理论为基础,重点研究了小波网络在非线性时间序列中的建模预测方法,利用深圳综合指数数据,建立了股票指数预测模型.该模型克服了传统的时间序列预测模型仅局限于线性系统的情况,避免了BP神经网络模型固有的缺陷.仿真结果表明,该方法比神经网络预测方法的预测精度高,可以很好地应用于某些非线性时间序列的预测中.  相似文献   

13.
风速特性是风电机组设计和运行的重要影响因素。利用几种经典和现代非线性信号分析方法对风电机组上实测风速数据的非线性特性进行分析研究。通过均值、方差和偏度等特征值的非对称性和突变特性判断风速长时间序列的非平稳特征,对风速序列的概率分布计算反映风速的非高斯性,利用对数功率谱和频率之间的拟合关系确定风速的非平稳特性,进一步采用双相干谱分析和希尔伯特-黄变换等现代信号分析方法对风速数据是非高斯性和非平稳性进行了分析和验证。  相似文献   

14.
为提高风速序列预测的准确性,在双承接层Elman网络的基础上提出了迟滞Elman预测网络.网络具有输入层、隐层、隐层承接层、输出层以及输出承接层5层结构,并在隐层承接层和输出承接层的单元中增加了迟滞激励响应函数,从而将迟滞特性引入到Elman网络中,以提高网络处理连续信息的能力.选择梯度下降方法作为网络的学习算法,训练网络的权值及迟滞参数,利用该预测网络实现了风速序列的多步预测分析.仿真实验结果表明:迟滞特性的引入能够减小预测结果的随机波动性,有利于提高预测结果的可靠性,与现有预测方法相比,迟滞Elman网络的平均预测误差能够减小8%以上,整体预测性能以及波动较强的局部预测性能都能得到显著提高.  相似文献   

15.
针对时序分类问题,提出一种竞争型径向基过程神经网络时序分类器.给出了复合竞争过程神经元单元的定义,引入复合竞争过程神经元隐层,利用竞争型径向基过程神经网络输入为时变函数的特点,由复合竞争过程神经元单元完成对过程式输入信息的模式匹配和时空聚合运算,给出了具体学习算法,省去了输出层线性连接权的计算,简化了网络结构和训练过程,提高了网络泛化能力.最后以UCI数据集多变量时序分类问题验证了分类器的有效性.  相似文献   

16.
将传统神经元的激励函数改为迟滞激励函数,将迟滞特性引入神经网络中,构造迟滞神经网络.利用迟滞特性增强神经元对原状态保持的惯性,从而减少了神经元状态的错误变化,提高了神经网络的存储和记忆能力.利用迟滞分支响应的跳变特性以抑制网络训练过程中假饱和现象的发生.借助于前向网络的结构和学习算法,构造应用于时间序列预测分析的迟滞神经网络模型,并将其应用于社会商品零售价格指数的预测分析中.预测结果表明,该网络具有良好的泛化能力,预测效果优于传统神经网络.  相似文献   

17.
为对畸形波这类突发性事件进行较为准确的预报,避免畸形波对海上建筑物和人员安全产生的巨大危害.采用紧致型小波神经网络模型,根据某岛礁地形实测数据建立的岛礁三维模型中测得的波高试验数据,选取试验数据中3种典型波高时间序列分别实现了包含畸形波的波浪数据对常规波浪的预报、包含近似畸形波的波浪数据对畸形波的预报以及常规波浪对包含...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号