首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
臧戈  包丽颖  苏岳锋  吴锋  陈实 《功能材料》2008,39(5):817-820
采用新的溶胶凝胶工艺,即在溶胶中加入活性炭与柠檬酸、聚乙烯醇和聚乙二醇等添加剂,制得具有尖晶石结构的新型准纳米晶Li4Ti5O12.测试表明,加入活性炭和聚乙二醇制备出的材料性能最优异,首次嵌脱锂效率可达99.2%,20mA/g电流条件下的可逆嵌锂容量为122.1mAh/g,嵌脱锂平台非常稳定.将其制成嵌锂电极后与活性炭电极构成新型的Li4Ti5O12/AC非对称电化学电容器.电化学测试表明,在20mA/g电流条件下,其Li4Ti5O12电极比电容量为103.5mAh/g,充放电效率达96%,充放电曲线的对称性、线性保持较好,电容器内阻小,大电流充放电性能突出.  相似文献   

2.
以月桂酸为分散剂,采用无水溶胶-凝胶法合成了高分散的Li4Ti5O12纳米晶.采用XRD、SEM、TG-DSC、激光粒度分析仪、交流阻抗以及恒流充放电测试,对材料的形貌、结构和电化学性能进行表征.结果表明,煅烧温度对Li4Ti5O12的结晶度、微观形貌及其电化学性能有显著的影响.800℃下热处理10h后的产物,颗粒尺寸细小均匀,约在120~275nm之间,显示出优异的电化学性能.在0.5和1C倍率下,首次放电比容量分别可达174.7和163.3mAh/g,经过50次放电循环后,放电容量循环性能优异.研究表明该高分散纳米颗粒的合成方法是适合制备高电化学性能的Li4Ti5O12材料的工艺方法.  相似文献   

3.
Li_4Ti_5O_(12)的溶胶-凝胶合成及性能研究   总被引:1,自引:0,他引:1  
研究了一种制备锂离子电池负极材料的Li4Ti5O12新工艺.以醋酸锂和钛酸丁酯为原料,异丙醇为溶剂,采用溶胶-凝胶法制备前驱体,再通过一定的热处理后制备了锂离子电池负极材料Li4Ti5O12采用XRD、SEM及电化学性能测试等分析手段考察了不同热处理温度对产品性能的影响.结果发现,经过850℃热处理24h后得到的产品粒径分布均匀、结晶度好;并且表现出较好的电化学性能,在1~2.5V之间充放电,0.1、1.0和2.0C首次放电比容量分别达到174.5、154.9和124.38mAh/g,并且大电流充放电时具有较好的循环性能.研究表明该方法是适合制备高活性的Li4Ti5O12工艺方法.  相似文献   

4.
以钛酸锂,二氧化钛,石墨为原料采用固相烧结法制备了Li4Ti5O12/graphite复合材料。采用X-射线衍射、扫描电镜和电化学测试等对合成产物进行了表征。结果表明制得的Li4Ti5O12/graphite复合材料的首次可逆容量达到152mAh/g;在0.2C倍率下,经160次循环后,容量仍能保持111.5mAh/g。与纯Li4Ti5O12相比,Li4Ti5O12/graphite复合材料具有更高的可逆容量,表现出较好的循环性能,是一种优良的锂离子电池负极材料。  相似文献   

5.
以己二酸为络合剂,通过溶胶-凝胶法合成了具有优良电化学性能的电极材料Li4Ti5O12。采用XRD、SEM、恒流充放电测试对材料的结构、形貌和电化学性能进行了表征。结果表明:通过该法制备的样品为颗粒细小均匀的立方尖晶石Li4Ti5O12纯相,并显示出优良的电化学性能;0.1C倍率下首次放电比容量为169.59mAh/g,经过30充放电循环后仍然保持在158.17mAh/g。在2.0C倍率下,其可逆容量仍可达到124mAh/g,表现出良好的倍率性能。  相似文献   

6.
锂离子电池负极材料球形Li4Ti5O12的合成及性能研究   总被引:4,自引:0,他引:4  
研究了一种制备锂离子电池负极材料Li4Ti5O12的新工艺.以TiCl4为原料,水解制备出Ti4 溶液,通过“外凝胶”法制备出球形前驱体,与Li2CO3按计量比混合均匀,再通过一定的热处理后制备了锂离子电池负极材料球形Li4Ti5O12.采用XRD、SEM及电化学性能测试等分析手段考察了不同热处理温度对产品性能的影响.结果发现,经过800℃热处理16h后得到的产品颗粒呈球形、流动性好、粒径分布均匀、结晶度好;产品具有较高的振实密度,达到1.8g/cm3;并且还表现出较好的电化学性能,在1-3V之间充放电,其首次放电比容量高达160.7mAh·g-1,经过20次充放电循环后,其放电比容量仍有150.2mAh·g-1.研究表明该方法是一种适合制备高密度高活性Li4Ti5O12材料的工艺方法.  相似文献   

7.
在固相法合成纳米Li4Ti5O12电极材料的过程中采用精细化砂磨技术,研究发现砂磨处理时间是影响纳米Li4Ti5O12微观结构和电化学性能的关键因素,XRD表明砂磨处理后Li4Ti5O12仍为尖晶石结构,粒度分布和SEM照片显示经过精细化砂磨处理后,Li4Ti5O12颗粒平均粒径由500 nm减小为370 nm,粒径分布也更加均匀;电化学性能评价结果显示,砂磨处理可使Li4Ti5O12电极材料倍率比容量增大约10~20 mAh/g,高倍率下增幅较低倍率更大,100次循环容量基本无衰减,稳定性很好。  相似文献   

8.
姚经文  吴锋 《功能材料》2006,37(11):1752-1754
采用高温固相反应法制备尖晶石相Li4Ti5O12负极材料.初步研究了反应温度和反应时间对Li4Ti5O12电化学性能的影响.XRD衍射未观测到TiO2残余存在;电化学测试显示,1.2~2.5V恒流充放电,其可逆容量达158.3mAh/g,首次库仑效率为95.2%;循环20周其容量衰减率仅为3.1%.  相似文献   

9.
以3.98mol/L的四氯化钛为前驱体溶液,采用内凝胶法制备了具有尖晶石结构的球形钛酸锂(Li4Ti5O12)粉末。通过XRD、SEM及电化学性能测试等分析手段表明,合成的Li4Ti5O12材料均为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),且具有较大的比表面积。以这种流动性好、粒径分布均匀、结晶度好的球形钛酸锂为正极材料和Li片为负极材料组成的锂离子电池具有平稳的充放电电压平台和优异的循环性能。在1.0~2.5V充放电,其首次放电容量为173.8mAh/g,经30次充放电循环后,其放电比容量仍有170.2mAh/g。  相似文献   

10.
电极活性材料Li4Ti5O12的制备及其主要影响因素   总被引:1,自引:0,他引:1  
在正交试验的基础上考察了烧结温度及时间、锂源对固相合成Li4Ti5O12性能的影响.结果表明,烧结温度为最显著影响因素;恰当的温度与时间组合可以制备粒径小、结晶度好的产物,具有良好的电化学性能;硝酸锂为锂源制备的Li4Ti5O12具有较好的高倍率充放电能力.以LiNO3为锂源,空气气氛下800℃烧结12h,所得Li4Ti5O12在大电流密度下充放电性能良好,1C、2C、5C时的放电容量分别达到了151、140、115mAh·g^-1,且具有良好的可逆性.  相似文献   

11.
李军  周燕  唐盛贺  陶熏 《功能材料》2013,44(13):1856-1858
为提高Li4Ti5O12的导电性和倍率性能,应用二步固相法制备了Nb掺杂的Li4Ti4.95Nb0.05O12负极材料,X射线衍射、扫描电镜、激光粒度分布仪、充放电测试、循环伏安和交流阻抗等测试结果表明,合成的样品具有单一的尖晶石结构和平稳的充放电平台,粒径分布均匀,Nb掺杂改性的Li4Ti5O12具有优良的电化学性能,0.1、0.5、1和10C首次放电比容量分别为174.1、159.7、147和123.3mAh/g。10C下,循环20次后容量保持为118.1mAh/g。  相似文献   

12.
以三乙醇胺为配位剂,Ti(OC4H9)4和LiAc·2H2O为原料,通过溶胶-凝胶法制备锂离子电池负极材料尖晶石Li4Ti5O12。通过X射线衍射、扫描电子显微镜、循环伏安、电化学阻抗和恒流充放电分析检测产物的结构、形貌及电化学性能。结果表明:配位剂的用量对Li4Ti5O12结构及电化学性能有显著影响,其中三乙醇胺与Ti摩尔比为0.8时,Li4Ti5O12具有良好的的电化学性能。1.0C下,其首次放电容量为153.0mAh·g-1,35次循环后放电容量仍为139.9mAh·g-1,容量保持率为91.5%。  相似文献   

13.
球形纳米晶LiFePO4和Li4Ti5O12的制备及电池研究   总被引:3,自引:0,他引:3  
分别通过"控制结晶"和"外凝胶"工艺合成了球形纳米晶LiFePO4/C和Li4Ti5O12/C材料.通过XRD、SEM、比表面及电化学性能测试等分析手段表明,合成的LiFePO4/C和Li4Ti5O12/C材料均为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),具有较大的比表面积,振实密度分别达到1.25和1.71g/cm3;1C倍率下的首次放电比容量分别达到144.0和144.2mAh/g,并表现出优良的循环性能.以LiFePO4/C和Li4Ti5O12/C为正负极材料组成的1.8V锂离子电池具有平稳的充放电电压平台和优异的循环性能.  相似文献   

14.
将钛源、锂源和碳源三种化合物一起球磨湿混成均匀浆料,再依次经过喷雾干燥和高温煅烧制得晶粒表面包覆纳米碳层的多孔球形钛酸锂(Li4Ti5O12)材料.通过XRD、SEM、TEM、BET和电化学性能测试等分析手段表明,合成出的Li4Ti5O12/C材料为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),具有较大的比表面积,达到39.5 m2/g;在0.1C、1.0C和5.0C倍率下的首次放电比容量分别达到172.2、168.2和153.6 mAh/g,并表现出优良的循环性能.晶粒表面包覆碳的多孔Li4Ti5O12材料具有明显的高倍率性能和循环稳定性优势.  相似文献   

15.
无水溶胶-凝胶法合成Li_4Ti_5O_(12)纳米晶及性能研究   总被引:1,自引:0,他引:1  
以月桂酸为表面活性剂,通过无水溶胶-凝胶法合成了高分散的Li4Ti5O12纳米晶。采用XRD、SEM、TG-DSC以及恒流充放电测试等手段对材料的形貌、结构和电化学性能进行表征。通过研究Li/Ti摩尔比、表面活性剂的量及煅烧温度对物相结构、颗粒形貌及电化学性能的影响,优化制备工艺。结果表明,表面活性剂的量对Li4Ti5O12的微观形貌及其电化学性能有显著的影响。800℃热处理10h后的产物,颗粒尺寸在100~300nm之间,基本无团聚,具有较好的分散性,显示出优异的电化学性能,1和2C下,首次放电容量分别为163.3和132.3mAh/g,50次放电循环后,放电容量无明显衰减。  相似文献   

16.
分别以Li2CO3,LiCl为锂源与FeC2O4·2H2O和NH4H2PO4混合,常温机械活化后在惰性气氛中经高温烧结,合成出纯相LiFePO4正极材料.采用X射线衍射仪,扫描电镜和电化学测试等对样品进行了表征,考察了不同锂源及合成温度对LiFePO4的物理特性和电化学性能的影响.结果表明,以Li2CO3、LiCl为锂源均能合成出橄榄石型LiFePO4正极材料,但以LiCl为锂源合成的样品中含有Fe2P2O4、LiFe5O8等微量杂质;其中以Li2CO3为锂源在650℃下烧结12h合成的样品具有优良的电化学性能,室温下以0.1和1C倍率放电,首次放电比容量分别为153.9和126.5mAh/g,循环性能较好.  相似文献   

17.
基于煅烧温度对Li4 Ti5O12粒径与反应性的影响,采用两步固相反应制备了纳米Li4 Ti5 O12/C复合材料,并采用XRD、SEM、TG/DTA、电化学阻抗谱(EIS)及充放电测试进行了表征.结果显示,无定形TiO2和Li2 CO3原料于600℃反应生成Li2TiO3和金红石TiO2复合物,晶粒基本无生长;高于700℃煅烧,复合物转化为Li4 Ti5 O12,但晶粒生长增速.在原料中掺入蔗糖于800℃一步固相反应制备Li4 Ti5O12/C复合材料,可显著抑制晶粒生长,但产物中含有金红石TiO2杂相,电化学性能不佳.采用两步固相反应,原料于600℃预热处理得到Li2TiO3/TiO2复合物,然后掺入蔗糖于800℃高温煅烧,可制得粒径约100~200nm的纯相Li4 Ti5O12/C复合材料,0.2C放电容量达167.3mAh/g,1C放电容量达163.1mAh/g,1C循环30周后容量保持率达96%.  相似文献   

18.
冯传启  王世银马军 《功能材料》2007,38(A04):1431-1433
报道一种合成Li4Ti5O12的新颖方法。XRD结果表明该方法合成的Li4Ti5O12化合物为尖晶石结构。用扫描透射显微镜对该化合物的粒径和形貌进行了分析.并对Li4Ti5O12的电化学性能进行测试。结果表明,通过该法合成的尖晶石材料在3.2-0.8V电压范围,采用一定电流密度下进行充放电,具有较高的放电容量(235mAh/g)和较好的循环性能。该法合成的具有良好电化学性能的Li4Ti5O12,使得其成为很有潜力的锂离子电池负极材料。  相似文献   

19.
Li4Ti5O12是具有良好应用前景的锂离子电池负极材料之一.本研究以聚丙烯酰胺(PAM)为模板剂和碳源,采用改进的固相合成法制备锂离子电池负极材料Li4Ti4.95Al0.05O12和Li4Ti4.95Al0.05O12/C.利用X射线衍射仪、场发射扫描电镜等测试手段表征材料的物相结构和形貌.结果表明:Al掺杂未改变Li4Ti5O12的尖晶石结构,合成过程中PAM模板剂的引入能够有效调控材料微观形貌并降低颗粒团聚程度.采用恒流充放电和交流阻抗测试材料的电化学性能,Li4Ti4.95Al0.05O12/C复合材料的比容量和循环性能得到明显改善,0.2C倍率下首次充放电比容量分别达到159.2和160.8 mAh/g,5C倍率时仍有较好的循环性能.  相似文献   

20.
以偏钛酸粉末作为钛源,制备钛酸锂(Li4Ti5O12)纳米材料,Li4Ti5O12由含锂过氧化钛配合物分解自组装后经煅烧结晶而得。采用X射线衍射、扫描电子显微镜、氮气吸附-脱附和恒流充放电测试对材料结构、形貌和电化学性能进行表征。结果表明:水体系下,锂钛摩尔比为4∶5、于600℃煅烧5h得到的Li4Ti5O12纳米球颗粒粒径在500nm左右,且具有丰富的孔隙,比表面积达到22.947m2/g;在电流密度4000mA/g条件下,比容量为157mAh/g,电流密度500mA/g下循环400次放电容量保持率为95.2%。表明水体系自组装形成的Li4Ti5O12纳米负极材料可以缩短锂离子迁移距离,其多孔性可以增大电解液与电极活性材料的接触面积,使离子电子传输速率同时得到提高,从而获得优异的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号